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Abstract 21 

Tail lesions caused by tail biting are a widespread welfare issue in pig husbandry. 22 

Determining their prevalence currently involves labour intensive, subjective scoring 23 

methods. Increased societal interest in tail lesions requires fast, reliable and cheap 24 

systems for assessing tail status. In the present study, we aimed to test the reliability 25 

of neural networks for assessing tail pictures from carcasses against trained human 26 

observers. Three trained observers scored tail lesions from automatically recorded 27 
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pictures of 13 124 pigs. Nearly all pigs had been tail docked. Tail lesions were 28 

classified using a 4-point score (0 = no lesion, to 3 = severe lesion). In addition, total 29 

tail loss was recorded. Agreement between observers was tested prior and during the 30 

assessment in a total of seven inter-observer tests with 80 pictures each. We 31 

calculated agreement between observer pairs as exact agreement (%) and 32 

prevalence-adjusted bias-adjusted kappa (PABAK; value 1 = optimal agreement). Out 33 

of the 13 124 scored pictures, we used 80% for training and 20% for validating our 34 

neural networks. As the position of the tail in the pictures varied (high, low, left, right), 35 

we first trained a part detection network to find the tail in the picture and select a 36 

rectangular part of the picture which includes the tail. We then trained a classification 37 

network to categorise tail lesion severity using pictures scored by human observers 38 

whereby the classification network only analysed the selected picture parts. Median 39 

exact agreement between the three observers was 80% for tail lesions and 94% for 40 

tail loss. Median PABAK for tail lesions and loss were 0.75 and 0.87, respectively. The 41 

agreement between classification by the neural network and human observers was 42 

74% for tail lesions and 95% for tail loss. In other words, the agreement between the 43 

networks and human observers were very similar to the agreement between human 44 

observers. The main reason for disagreement between observers and thereby higher 45 

variation in network training material were picture quality issues. Therefore, we expect 46 

even better results for neural network application to tail lesions if training is based on 47 

high quality pictures. Very reliable and repeatable tail lesion assessment from pictures 48 

would allow automated tail classification of all pigs slaughtered, which is something 49 

that some animal welfare labels would like to do. 50 

 51 
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 53 

Implications 54 

Lesions caused by tail biting are a big welfare problem in pig production. Pigs reaching 55 

slaughter without tail lesions could be rewarded with premium payments, but this 56 

requires reliable lesion assessment in large numbers of pigs. We showed, that neural 57 

networks could help in automating this assessment. 58 

 59 

Introduction 60 

Tail biting is a widespread welfare problem in pig husbandry during which pigs 61 

manipulate the tails of their group mates with their mouth. This results in tail lesions of 62 

different degrees of severity, from superficial skin lesions over deep lesions to 63 

completely bitten-off tails (Taylor et al., 2010). Tail biting is influenced by multiple risk 64 

factors which makes it difficult to prevent (EFSA, 2007). Cutting off the tails shortly 65 

after birth (tail docking) greatly reduces the risk of tail biting occurring later in life 66 

(EFSA, 2007). In the EU, tail docking is only allowed in exceptional cases (Council 67 

Directive 2008/120/EC; Council of the European Union, 2008) but nevertheless 68 

frequently applied. This discrepancy has led to a formal complaint to the European 69 

Commission (Marzocchi, 2014), which in turn caused increased public awareness and 70 

political pressure. As a result, animal welfare labels started to include tail status as a 71 

criterion (“Für mehr Tierschutz”, Germany; “Beter leven”, The Netherlands; “Bedre 72 

dyrevelfærd”, Denmark) and programmes were launched which pay a premium for 73 

non-docked pigs (e.g. “Ringelschwanzprämie” by the German state Lower Saxony: 74 

16.50 € per  slaughter pig with not docked, not injured tail; ML Niedersachsen, 2015).  75 

The status of a pig tail is therefore now economically relevant. At the same time, large 76 

numbers of pig tails have to be evaluated. Thus, there is a need for fast, reliable, valid 77 
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and cheap systems to assess tail status. Currently, tail status for the German 78 

“Ringelschwanzprämie”, for example, is assessed by more or less trained observers 79 

who travel to farms and walk through pens where they score pig tails (oral information; 80 

S. Dippel). Assessing pigs on multiple farms in short periods of time requires 81 

considerable resources in terms of time and money for travelling and assessment, with 82 

added biosecurity risk through entering pens. Furthermore, tail lesion scoring by 83 

multiple observers has a strong subjective component (Mullan et al., 2011). Tails can 84 

also be scored with minimal logistical input at slaughterhouses, where pig carcasses 85 

are already inspected for signs of disease or severe injury. Studies have investigated 86 

possible integration of tail lesion scoring in this inspection but found significant 87 

influences of e.g. inspector work shift (Teixeira et al., 2016).  88 

Neural networks could be a low-cost, objective and indefatigable alternative to human 89 

observers. Their development distinctly improved automated object recognition in 90 

images (Russakovsky et al., 2015) and they have already been used for e.g. 91 

classification of hams (Muñoz et al., 2015). Some attempts have been made at 92 

developing automated assessment of lesions on slaughter carcasses using various 93 

forms of algorithms. To our knowledge, the only published systems are a system for 94 

assessing footpad dermatitis in broilers (Vanderhasselt et al., 2013) and a system for 95 

recording presence or absence of tail and ear lesions in pigs (Blömke and Kemper, 96 

2017). However, many research and industry institutions are still struggling with the 97 

reliability of their systems, which are mostly based on linear algorithms. The aim of the 98 

present study was to test the reliability of neural networks for assessing tail lesions 99 

from pictures of pig carcasses.  100 
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Methods 101 

Tail pictures  102 

Tail pictures were taken of all pigs slaughtered on six days between March 27 and May 103 

12, 2017 in one abattoir in North-Western Germany. Two synchronized RGB (red-104 

green-blue) cameras automatically photographed tails from two dorsal angles after 105 

scalding and dehairing (cameras: UI-5480RE-C-HQ rev.2, lenses: IDS 25 HB Tamron 106 

Focal Length 12 mm, casing: Videotec Type NXM; all by IDS Imaging Development 107 

Systems, Obersulm, Germany). The two angles were stitched together in a single 108 

picture per pig. Lighting was provided by standard fluorescent lamps (tubes) with 109 

luminous colour 840 (cold white). Four double tubes were installed at the height of the 110 

carcase transport rails and provided light from above at distances of approximately 1 111 

and 2 m from the carcase. One additional double tube was installed at the height of 112 

the back of the carcase with a distance of 2.8 m in order to reduce shadows from the 113 

top lights. 114 

A total of 100,000 pictures were taken during the six days, out of which approximately 115 

90% showed tails without lesions. As the aim was to determine agreement across all 116 

lesion severities, which may be influenced by unequal severity prevalences (Kottner et 117 

al., 2011), we deleted a random sample of pictures without lesions in order to equalize 118 

the distribution of severity classes. For this, the most experienced observer screened 119 

pictures by recording hour (pictures from the same hour had been saved in one folder) 120 

in order to estimate the respective severity prevalences. She then first deleted all blurry 121 

pictures and then deleted every second picture without lesions until roughly similar 122 

proportions of pictures with different lesion severities were left in each folder. All 123 

pictures left were used for human observer training or training and testing the neural 124 

networks, respectively.  125 
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The first author made a software tool for picture scoring utilizing the OpenCV-library 126 

(OpenCV team, 2018) which allowed observers to look at an image and directly enter 127 

the scores. In addition, observers marked the position of the anal drill hole with a 128 

mouse click in both angles. Pictures were brightened using IrfanView© (version 4.44) 129 

and assessed on screens calibrated with dccw.exe (Windows®).  130 

Human assessment of tail pictures 131 

After training inter-human agreement, a total of 13 124 pictures scored by three 132 

human observers was used for training and testing the neural networks.   133 

Scoring key 134 

We scored tail lesions on a scale from 0 to 3 and tail losses as presence (1) or absence 135 

(0) of total tail loss (Figure 1). Discolouration at the tail base was not taken into account 136 

because in direct observations it seemed to be associated with brushing during 137 

scalding rather than with biting. Different degrees of partial tail loss could not be 138 

assessed because of tail docking.   139 
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Observers and training 140 

Pictures were scored by three observers in order to distribute the workload. Observers 141 

were chosen based on availability and previous experience with scoring tail lesions. 142 

One observer had experience in scoring tails on pictures from carcasses, one observer 143 

had experience in scoring tails on live pigs and one observer was naïve regarding 144 

scoring of pig tails. Observers trained by discussing and scoring tail pictures and tested 145 

their agreement at regular intervals using 80 unknown pictures for each test. The 146 

pictures were preselected by the last author (who led observer training and tests) to 147 

make sure, each test batch contained several pictures for each of the scores. We 148 

calculated agreement between observer pairs as exact agreement (%) and 149 

prevalence-adjusted bias-adjusted kappa (PABAK = [(k*p)-1]/(k-1) where k = number 150 

of categories and p = proportion of matchings). PABAK values > 0.6 to 0.8 were 151 

regarded as satisfactory to good agreement and values > 0.8 as very good agreement 152 

(Fleiss et al., 2003). Before picture assessment started, five inter-observer tests were 153 

required until satisfactory agreement was achieved. Two inter-observer tests were 154 

performed during the assessment to monitor potential drifts. 155 

Neural network assessment of tail pictures 156 

There are different approaches regarding the respective proportions of training and 157 

validation pictures. Many image datasets supplied for developing visual recognition 158 

systems use 95% training and 5% validation pictures (Russakovsky et al., 2015). 159 

However, if the pictures (or mathematical outcome parameter) are highly variable such 160 

as the appearance of tail lesions in pictures, somewhat larger validation data sets in 161 

the range of 20% are recommended (Dohoo et al., 2012) and used (e.g. image 162 
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datasets CIFAR-10 and CIFAR-1001 or MNIST2). This is why out of the 13 124 scored 163 

pictures we used 10 499 (80%) for training and 2 625 (20%) for subsequent validation 164 

of the networks (Table 1).  165 

Localization of the tail region 166 

In order to train a classification network properly, it is important to use only relevant 167 

picture sections as input. As the position of the tail varied from picture to picture, we 168 

first trained a part detection network to locate the relevant region in each picture before 169 

it was handed to the classification network. The part detection network (Figure 2) was 170 

based on the idea from Bulat and Tzimiropoulos (2016) and realized using a fully 171 

convolutional residual layer (ResNet)-50 backbone (He et al., 2016). To preserve the 172 

local information of the input data, we extracted, scaled up and added the feature maps 173 

after the 7th (8-fold downsampling), 13th (16-fold downsampling) and 16th (32-fold 174 

downsampling) building block of the ResNet before applying the pixelwise sigmoid-175 

loss. We initialized the network with pretrained Imagenet weights (Russakovsky et al., 176 

2015) and fine-tuned it for 30 epochs with the Adam-optimizer (Kingma and Ba, 2015) 177 

at a learning-rate set to 0.0001. In order to subjectively verify that the network used the 178 

tail-region to identify the injury patterns we used the Image-Specific Class Saliency 179 

Visualisation from Simonyan et al. (2014). 180 

Classification of tail lesion and tail loss 181 

The part detection network predicted the location of the anal drill hole, which was then 182 

used to position the region-of-interest window. The original pictures were scaled down, 183 

so that the selection window for each angle covered 320 x 256 px. The two windows 184 

for the two angles joined together resulted in the input of 320 x 512 px for the classifier 185 

                                            

1 https://www.cs.toronto.edu/~kriz/cifar.html 
2 yann.lecun.com/exdb/mnist/ 
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network. For tail lesion classification, we used a modification of the standard Inception-186 

ResNet-v2 classifier network by Szegedy et al. (2017) for predicting the four tail lesion 187 

scores in our dataset. To compensate for the large imbalance between scores, we 188 

used sub-/oversampling until 4 000 training pictures were available for each score. 189 

This meant that pictures from lesion score 2 and 3 were duplicated many times (Table 190 

1). During training, the pictures were augmented online by rotating the two picture-191 

halves randomly (± 10 degrees) before cutting the region of interest and by applying 192 

picture manipulations like adaptive noise, brightness-changes and blurring to the final 193 

input-pictures. Again, we initialized the network with pretrained Imagenet weights and 194 

fine-tuned it for 30 epochs with the Adam-optimizer (learning-rate set to 0.00001). We 195 

used a categorical-crossentropy loss on the final four-classes-softmax activation. Due 196 

to the pre-trained weights, the network started to overfit quickly so we applied early-197 

stopping. The tail loss classification was done on the same pre-processed input 198 

pictures and the same classification network architecture, but with binary-crossentropy 199 

loss on a single sigmoid activated decision-neuron. 200 

Results 201 

Agreement between human observers 202 

For lesions, exact agreement between observer pairs ranged from 65 to 88% with 50% 203 

of agreement values between 71 to 84% (first (Q25) to third (Q75) quartile; median = 204 

80%; Figure 3). PABAK for lesions ranged from 0.56 to 0.84 with 50% of values 205 

between 0.64 and 0.80 (median = 0.75). For tail loss, exact agreement ranged from 85 206 

to 98% (Q25 to Q75: 90 to 95%, median = 94%) and PABAK ranged from 0.70 to 0.95 207 

(Q25 to Q75: 0.80 to 0.90, median = 0.87). 208 



10 
 

Agreement between neural network and human assessment  209 

The trained tail lesion classification network yielded an agreement of 74% with the 210 

human observer scores, while agreement for tail losses was 95%. For tail lesions, 211 

normalized values on the confusion matrix diagonal ranged from 0.59 to 0.85 with 212 

uncertainty occurring on both sides of the diagonal (Figure 4).  213 

The classification network mostly used information from the correct region for 214 

classification (Image-Specific Class Saliency Visualisation; Figure 5). In pictures with 215 

many optical structures in non-tail regions, especially reddish-coloured structures, the 216 

network used more non-relevant pixels for its decision. Misclassifications were often 217 

associated with shadows or overlapping structures (Figure 6). 218 

Discussion 219 

In the present study, human observers evaluated pictures of pig carcasses regarding 220 

tail lesions and tail losses. The scored pictures were used to train and test neural 221 

networks. Agreement between network and observer scores were similar to agreement 222 

between human observers.  223 

Agreement between human observers was acceptable in most tests for lesions and 224 

good in most tests for tail loss, but fluctuated over time for both parameters. This was 225 

mostly dependent on the prevalence of blurry pictures or lesions or losses on the 226 

border between two categories in the test pictures. Even though lighting had been 227 

optimised as much as possible, all pictures were more or less blurred due to high speed 228 

of the carcasses on the line. In addition, most carcasses had discolourations and marks 229 

from the scalding and dehairing process. The latter were also present on some tails 230 

and thus interfered with assessment of low severity lesions. Overall, the greatest 231 

difficulty was, where to distinguish between two lesion severity categories, i.e. “is this 232 

still score 0 or already score 1”. The issue remained despite training, due to the great 233 
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variation regarding colour and size along continuous gradients. This problem of 234 

categorising continuous characteristics has been described before. In a study where 235 

three observers scored 80 pictures and videos of sheep feet regarding lesions on a 5-236 

point scale (Foddai et al., 2012), the width of the categories varied significantly 237 

between observers, and categories also overlapped within observers. Similar results 238 

were found for scoring lameness in sheep on an ordinal versus visual analogue 239 

(continuous) scale (Vieira et al., 2015). Therefore, assessment of lesions on a 240 

continuous scale might be recommendable for reducing variation in training data by 241 

improving agreement between observers who annotate training pictures.  242 

In tasks of supervised learning like the one presented here, neural networks can only 243 

be as good as the data they are trained with. This is why the disagreement between 244 

human observers in our study is reflected in the uncertainty in the confusion matrix of 245 

the tail lesion network. Using averaged annotations from several trained observers 246 

(Muñoz et al., 2015) could additionally improve training material quality. However, 247 

neural networks also require large datasets in order to be trained on complex 248 

parameters, such as tail lesions. Several observers re-scoring the same pictures 249 

considerably increases labour input. Therefore, calculations on trade-off between large 250 

numbers of training pictures annotated with greater variability by single observers 251 

versus fewer pictures with average annotations with less variability should be made. 252 

Nevertheless, improving human agreement is the necessary first step towards better 253 

network assessment results. Based on our study, high quality pictures are a 254 

prerequisite for good agreement. In addition, using continuous scales rather than 255 

categorical scores might help to raise agreement for lesions above 90%. 256 

Overall, the neural network assessment results in our study are very promising 257 

because the agreement between network and human observers was similar to the 258 
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agreement between human observers. So far, only few studies investigated automatic 259 

computerised injury assessment on carcasses. Vanderhasselt et al. (2013) tested a 260 

system for assessing footpad dermatitis in broiler chickens. The maximum correlation 261 

between scores assigned by humans and the automated system was 0.77. However, 262 

even though there is less spatial variation regarding the position of broiler footpads 263 

compared to pig tails on a line, the system found the relevant areas only in 86 of 197 264 

recorded chickens (44%). Blömke and Kemper (2017) achieved much better results 265 

with a system for automated assessment of presence or absence of ear and tail injuries 266 

in pigs. Their system found the relevant areas in an average of 95% of pictures. 267 

Sensitivity and specificity for detecting lesions were > 70% and > 94%, respectively, 268 

for tail as well as for ear lesions (2 634 to 2 684 pigs). Only presence or absence of 269 

lesions were assessed. Neither the threshold for lesion detection nor the algorithms for 270 

picture analysis were reported yet. 271 

Conclusions 272 

Neural networks can assess tail lesions in pictures from slaughter pigs with a 273 

reliability comparable to human observers. If supervised learning is used, high quality 274 

training material (i.e. pictures) is necessary for achieving good network results. In 275 

order to be able to generalise such complex parameters like tail lesions, neural 276 

networks require large numbers of training pictures with equal representation of 277 

different severities. Using continuous lesion severity scales instead of predefined 278 

categorical scores might help to make the system more repeatable and versatile. In 279 

sum, neural network analysis of tail pictures poses a promising technique which 280 

might allow all pigs in a welfare label to be scored for tail lesions with little labour 281 

input.  282 
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Tables 367 

Table 1: Number of pig carcase pictures scored by human observers and used for 368 

training and validating neural networks. Numbers are given for each score assigned 369 

by human observers for tail lesion and tail loss, respectively (Figure 1). Tail loss  was 370 

only scored as present or absent. Out of the 13 124 scored pictures, 80% were used 371 

for training and 20% for subsequent validation of the networks. n.a. = not applicable. 372 

Score Tail lesions Tail losses 

 Training Validation Training Validation 

0 6052 1460 9469 2359 

1 3905 1041 1030 266 

2 457 108 n.a. n.a. 

3 85 16 n.a. n.a 

  373 



16 
 

List of figure captions 374 

Figure 1: Scoring key used for assessing tail lesions and total tail loss on pictures from 375 

pig carcasses. Tail lesions and losses were scored independently of each other. 376 

“Lesion” was defined as broken skin. The tail loss 1 picture shows the longest 377 

remaining “stump” which was still considered as tail loss (longer stumps would be 378 

classified as tail loss 0). Centimetres given are subjective estimates from a picture.  379 

 380 

 381 

Score Tail lesion Tail loss 

0 

No visible lesion or 

reddish / violet / 

brownish discoloration 

the size of a pinhead. 

Skin looks intact 

  

No loss or 

partial loss 

with more 

than a 

“stump” left 

(> 3 cm)   

1 

Lesion < tail diameter 

at respective location, 

with or without loss of 

tail substance 
 

Total loss: 

only a 

“stump” 

protruding 

from tail 

base 

(≤ 3 cm) 

  

2 

Lesion ≥ tail diameter 

at respective location, 

with or without loss of 

tail substance 

 

n.a. 

 

3 

Tail tip with irregular 

outline (abrasion and / 

or elevations) in 

combination with dark 

reddish / brownish / 

blackish discoloration 

(necrosis) 

 

n.a. 
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382 

Figure 2: Architecture of a part detection network used for locating tails in pictures of 383 

pig carcases. The network learns to activate pixels in the specified areas which can 384 

then be used for positioning the region-of-interest windows for cutting out the relevant 385 

picture section (tail) for subsequent classification. 386 

 387 

388 

Figure 3: Results of inter-observer agreement tests of three human observers scoring 389 
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tail lesions or tail loss, respectively, from pig carcase pictures. Each dot represents 390 

the exact agreement (%) or prevalence-adjusted bias-adjusted kappa (PABAK; range 391 

0 to 1), respectively, for one observer-pair during one test (consecutive test number 392 

on X-axis; n = 80 pictures per test). Grey vertical line = start of data collection.  393 

 394 

 395 

Figure 4: Normalized confusion matrix for the predictions of the tail lesion 396 

classification network based on 13 124 pig tail pictures annotated by human 397 

observers. True label = tail lesion severity score assigned by humans, Predicted label 398 

= score predicted by neural network. The colouring indicates the normalised 399 

distribution of numbers of pictures per cell. 400 

 401 
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402 

Figure 5: Example pictures of slaughter pig tails from the verification of the tail lesion 403 

severity classification network (top row). From left to right, pictures represent tail 404 

lesion scores 0, 1, 2 and 3, respectively (Figure 1). The bottom row shows the 405 

respective gradient-map made by the network, in which warmer colours indicate a 406 

larger influence of the respective pixel on the final classification result. 407 

 408 

(a)  (b)  409 

(c)  410 

Figure 6: Three examples for misclassification of pig tail lesion severity scores by the 411 

network. Pictures (a) and (b) were assigned lesion score 1 by a human and lesion 412 
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score 0 by the network, picture (c) was assigned lesion score 3 by a human and 413 

score 2 by the network. 414 


