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Abstract. The tracking of deformation is one of the current challenges
in computer vision. Analysis by Synthesis (AbS) based deformation track-
ing provides a way to fuse color and depth data into a single optimization
problem very naturally. Previous work has shown that this can be done
very e!ciently using sparse synthesis. Although sparse synthesis allows
AbS-based tracking to perform in real-time, it requires a great amount of
problem speciÞc customization and is limited to certain scenarios. This
article introduces a new way of randomized adaptive sparsiÞcation of the
reference model that adjusts the sparsiÞcation during the optimization
process according to the required accuracy of the current optimization
step. It will be shown that the e!ciency of AbS can be increased signif-
icantly using the proposed method.

1 Introduction

Pose estimation and 3D object tracking are major research areas in computer
vision for more than 40 years. Traditionally a two-stage approach is applied,
where Þrst images are analyzed using edges, features, or optical ßow, and next
the features are used to calculate a result. The beneÞt of this two-stage approach
is a mathematically sound formulation since the problem is reduced to aligning
corresponding feature locations within the image.

However, if the reconstruction task is extended to the non-rigid case, the fun-
damental constraint allowing such a sound formulation is often removed. The
continuous improvement of depth cameras in the last 20 years and especially
the appearance of the Microsoft Kinect in 2010 has enriched the family of re-
construction algorithms by depth-image based approaches, which in many cases
di!er signiÞcantly from color image based reconstruction. Although for the rigid
case mature reconstruction [12] and people tracking [23] techniques are available,
generic deformation reconstruction still remains subject to research. Since depth
images provide dense distance information, and color images allow to deduce
lateral movements, a combination of both sensor types yields a powerful tool to
allow ambiguity free deformation reconstruction.

Color and depth information are not easily combined, hence a joint problem
formulation is di"cult when following the traditional two-stage reconstruction
using features. A class of algorithms bypassing the fusion problem is Analysis by
Synthesis [14] (AbS, sometimes also referred to as Ódirect methodsÓ). Instead of
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deducing a solution in multiple stages from the input image, the optimization
problem is formulated as Þnding parameters for a scene model that generates
artiÞcial sensor images, which Þt the real input images best. A lot of inherent
reconstruction problems are circumvented this way, including the fusion of vari-
ous input entities. As long as input data of a sensor can be synthesized, the joint
problem formulation is straight forward. A disadvantage of AbS is the increased
computational work, since the evaluation of the objective function implies a
rendering process for every sensor involved and a global search, in many cases
without available dertivatives 1, whereas feature correspondences allow local op-
timization on a function with known derivatives. The key to e"cient AbS is the
combination of a fast synthesis, based on partial, ÕsparseÕ synthesis [13], and an
e"cient global optimization scheme. Such a system can even track deforming
objects in real-time [24].

In this article, a new way of synthesis sparsiÞcation for AbS system is in-
troduced that circumvents the need for manual reference object sparsiÞcation,
provides automatic adjustment of the synthesis implicitly regarding the refer-
ence object complexity, and improves the overall AbS performance signiÞcantly.
Experiments show a potential speed up of factor 8 and more compared to the
established sparse synthesis.

1.1 Related Work

Deformation tracking in combined depth and color (RGB-D) video is a research
area that has not been investigated as much as deformation tracking in color
video or depth video alone. A lot of research has been carried out on color-
based deformation tracking using Non-Rigid Structure from Motion (NRSfM),
which was introduced by Bregler et al. [3] as an extension to Structure from
Motion (SfM) [25] by a set of deformation spaces, and it has been extended over
the years [5,6,26]. Like the original SfM, NRSfM utilizes 2D feature movements
to formulate a convex minimization problem which is solved using local (least-
squares) optimization methods. This allows to simultaneously recover camera
position, object shape, and deformation. If the initial object shape is already
known, Salzmann et al. [21] proposed a method that utilizes the object geometry
as a deformable triangle mesh, rather than relying on linear deformation spaces.
For the multi-camera case, Cagniar et al. [4] introduced a method that is able to
track complex human deformation spaces if the background can be subtracted
in the input footage. Similar to the multi-camera tracking of Rosenhahn [20],
it utilizes the object contour in the input data as well as feature movements to
align the tracking target with the input image.

The problem of deformation tracking in depth data is handled in a very dif-
ferent way by most algorithms, as depth images provide less information that
can be used to generate correspondences, such as features. Hence, algorithms
relying on depth features do only provide good results for small deformations

1 One exception can be found in [7], where the derivatives of the reprojection error
are calculated for a multi-view stereo setting.
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Fig. 1. Overview of the Analysis by Synthesis approach. A reference object is deformed
by a deformation function D using a estimated parameter vector ! . The sensor set
S synthesizes artiÞcial images which are compared to the input images by a Þtness
function F . The Þtness value is used by the optimizer (CMA-ES) to generate a reÞned
! .

[17]. The main advantage of range data over color is its ability to reconstruct
a 3D model of the observed scene for every frame, allowing it to directly track
deformations in 3D space. Algorithms like [18] perform local, ICP-like [2] shape
Þtting combined with global smoothness enforcement. Tracking human poses in
a depth camera is already well understood and can be solved by machine learn-
ing approaches [23]. For many specialized tasks, e.g., skeleton based tracking
[10], hand tracking [19,22] real-time solutions are available, as well as for generic
models and deformations if they are small enough such that a local, hierarchical
optimization can be applied [28]. Xu et al. [27] expressed non-rigid object track-
ing in RGB-D video as an inference problem in a Conditional Markov Random
Field using deformable patches to represent the observed surface. This way they
removed the requirement of the tracking target to be completely visible in the
Þrst frame. In [11] Innmann et al. combine color feature tracking with a depth-
based constraint formulation to dynamically reconstruct geometric shapes from
a single RGB-D sensor at real-time.

The remainder of this article is organized as follows: section 2 summarizes
the AbS tracking approach and the sparse synthesis as introduced in [13,14],
section 3 proposes the new adaptive sparsiÞcation method and introduces an
approximation algorithm to estimate the inaccuracy induced by sparsiÞcation.
Section 4 evaluates the proposed method on real data with known ground-truth
and section 5 concludes this article.

2 Analysis by Synthesis

The AbS concept is a generative, model-driven approach that di!ers from tra-
ditional reconstruction problem formulations in many key aspects. Input images
are not analyzed and processed, instead, a parameter space is established that
allows to express the solution as a parameter vector within this search space. A
solution guess (model parameters) can be evaluated by synthesizing the input
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images given the solution candidate and comparing it to the real input (see Fig.
1). This approach can be e"cient, if the synthesis is not performed by standard
rendering, but in a sparse way [24]. An in-depth introduction to AbS used for
deformation reconstruction can be found in [14].

Let M be a textured triangle mesh serving as a reference object for the AbS
tracking. Sparse synthesis reduces the triangle mesh information given byM to
the indexed set of verticesV = { vi } ! R3 and their corresponding texture color
C = { ci } ! [0, 255]3. A deformation parameter ! is evaluated as follows:

Given a set of SensorsS, let the input image be given as a function I in
c :

R2 " [0, 255] and I in
d : R2 " R for each color sensorc # S and depth sensor

d # S, respectively. Let further Ps : R3 " R2 denote the projection function
for sensors, mapping 3D points to the image plane. Let D! : R3 " R3 be a
deformation function parameterized by ! . Then the RMS error for a color sensor
sc is

esc (! ) =

!

" |V |! 1
#

(v ,c) " V # C

$(I in
sc

% Psc % D! )(v) & c$2
2

$

%

! 1
2

, (1)

where %denotes function composition. The depth error can be deÞned accord-
ingly. But since using an absolute depth error would make the error measure
dependent on the scene scale, we deÞne the relative RMS depth error for a
depth sensorsd as follows:

esd (! ) =

&

|V |! 1
#

v " V

'
(I in

sd
% Psd % D! )(v) & $D! (v) & O sd $2

( 2

$D! (v) & O sd $2
2

) ! 1
2

, (2)

where Osd is the camera center of sensorsd. In addition to providing invariance
to scene scale, this error formulation implicitly regards the accuracy of depth
sensors, which usually decreases with distance. A more sophisticated error for-
mulation, exploiting an explicit noise model can be found in [15].

The error sum of all sensors can be deÞned as a Þtness function

F (! ) =
#

s"S

" ses(! ) (3)

using weights" s # R> 0 for each sensors, which can either be found manually, by
automatic adjustment [14], or by deriving them from the probability distribution
of the measurements of each sensor [16]. Additional constraints or regularization
terms can be added to the Þtness function depending on the task at hand.

The tracking can now be formulated as an optimization problem: ! ! =
argmin F (! ), which is solved using the Covariance Matrix Adaptation - Evolu-
tion Strategy (CMA-ES) optimization scheme [9]. It proved to be very suitable
for this class of problems, since it is coordinate system independent, derivation
free, very economical with respect to the number of necessary Þtness function
evaluations, while still being able to Þnd global optima in noisy and non-convex
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environments [1]. The optimization scheme falls into the class of distribution-
based optimizers. For every iteration, a set of samples (parameter vectors! )
is distributed with respect to a multivariate Gaussian distribution and evalu-
ated by the Þtness functionF . Using the Þtness of each parameter vectorF (! ),
the Gaussian distribution is updated such that it maximizes the probability of
producing higher Þtness values in the next iteration.

The combination of a fast implementation of F and the e"cient CMA-ES op-
timization allows to track deformations in real-time. A crucial parameter when
tuning the AbS framework for a real-time tracking task is the degree of sparsi-
Þcation, as the evaluation time of each iteration has a linear relationship to the
number of vertices used in the sparse synthesis. Too few vertices will cause the
optimization to loose accuracy, while too many vertices cause long optimization
times.

In each iteration i of the CMA-ES, a new population of parameter vec-
tors { ! i,j } j =0 ,...," ! 1 is sampled, so that ! i,j ' N (! i ! 1, #2

i ! 1Ci ! 1), for all j =
0, . . . , " & 1, where ! i ! 1, #2

i ! 1 and Ci ! 1 are the population mean, variance and
normalized covariance matrix (i.e. detC = 1) of the last iteration, respectively
and " # N> 1 is the population size. The Þtness function is then evaluated for
each individual and the parameter vectors are sorted with respect to their Þtness
values. For easier notation (w.l.o.g), let the parameter vector indices match their
Þtness rank, that is F (! i, 0) ( F (! i, 1) ( á á á ( F (! i," ! 1). To calculate a new
mean, the sorted parameter vectors are weighted by a weight vectorw # [0, 1]" ,
with w0 ) w1 ) á á á ) w" ! 1 and $w$1 = 1. Evolutionary selection is imple-
mented by setting the Þrst µ # N weights to zero. The selection indexµ is usu-
ally set to µ = "

2 and the non-zero weights are chosen in a linear or logarithmic
fashion [8]. The new population mean is then computed as! i =

*
j wj ! i ! 1,j .

The new covariance matrix Ci is compiled from the old covarianceCi ! 1, the
sample covariance of the current distribution and the distribution C1

i along the
recent path of movements in the parameter space. For further details refer to
[9].

3 Adaptive SparsiÞcation

The idea of adaptive sparsiÞcation is to exploit an important property of the
CMA-ES: The distribution at iteration i around a mean ! i is completely cal-
culated from ordered sample positions and the update! i ! 1 " ! i and therefore
solely depends on the order induced by the Þtness functionF and not by the
Þtness values themselves.

Now let Fs be a sparsiÞed version ofF , in which only a random subsetVs of
V is regarded, with |Vs| = s|V |, s # (0, 1]. The larger the sparsiÞcation rates! 1,
the likelier it is that Fs deviates from F introducing a sparsiÞcation error. But
if s is chosen in a way that induces a sparsiÞcation error small enough such that
it does not change the order of the samples induced byFs in each iteration, the
sparsiÞcation does not a!ect the optimization at all. Although in practice the
missing knowledge aboutF and the random selection ofVs does not allow to
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To calculate a new mean, the sorted parameter vectors are
weighted by a weight vectorw ! [0, 1]! , with w0 " w1 "
... " w! ! 1 and

! ! ! 1
j =0 wj = 1 . Evolutionary selection is

implemented by choosing the Þrstµ ! N weights to be
zero. The selection indexµ is usually set toµ = !

2 , and
the non-zero weights are chosen in a linear or logarithmic
fashion [7]. The transition from an iterationi to i + 1 is
done by Þrst deÞning the new meanmi +1 as

mi +1 =
! ! 1"

j =0

wj ! i,j . (9)

The new distributionCi +1 is compiled from the old covari-
anceCi , the sample distributionCµ

i +1 of the current gener-
ation subject to the weightsw

Cµ
i +1 =

! ! 1"

j =0

wj (! i,j # mi )( ! i,j # mi )T , (10)

and the distributionC1
i +1 along the the recent path of move-

ment in the parameter spaceei +1

C1
i +1 = ei +1 eT

i +1 . (11)

ei +1 , the so called Òevolution pathÓ, is a cumulated vector
of the recent updated directions

ei +1 = (1 # ce)ei +
#

ce(2 # ce)$w$! 2
2

mi+ 1 # mi

�i
. (12)

The factorce ! [0, 1] determines how fast the vector adjusts
to new movement directions.
The new covarianceCi +1 is then deÞned as

Ci +1 = (1 # cµ # c1)Ci + c1C1
i +1 + cµ Cµ

i +1 , (13)

using weightscµ , c1 ! (0, 1). The new distribution size
�i +1 is chosen to maintain uncorrelated update steps, i.e.,
positively correlated movements are seen as an indication
for a search scale that is too small, while negatively cor-
related movements hint at a search scale that might be too
large. So, similar to (12), a second evolution path÷e is de-
Þned recursively by

÷ei +1 = (1 # ce)÷ei +
#

c÷e(2 # c÷e)$w$! 2
2 C

! 1
2

i
mi+ 1 # mi

�i
,

(14)
which is anisotropic, i.e., decorrelated from the distribution
Ci , its sample placement is based upon. The distribution
size is then updated by

�i +1 = �i exp
$

c÷e

q

$
$÷ei +1 $2

E($N (On ,1n " n )$2)
# 1

%%
, (15)

with q % 1 as a damping factor. The individuals of the next
iteration are then randomly distributed such that! i +1 ,j &

 
$�2C$F

F

m

�2C

! <µ

! # µ

F(! <µ )F(! # µ )

Figure 2. The Þtness functionF calculates a scalar Þtness value
F (�) (lower part) for every individual� that is distributed by
N (m, �2C) (upper part). The imagek�2CkF of the distribution
in the parameter space is visualized in blue.

N (mi +1 , �2
i +1 Ci +1 ) for all j ! {0, ..., � # 1}. Please refer

to [7] for a description about how to choosecµ , c1, ce, c÷e,
andq.
At this point, it is important to note that the distribution at
iterationi +1 around a meanmi +1 is completely calculated
from ordered sample positions and the updatemi ' mi +1

in the parameter space, andmi +1 is determined only by the
order induced by the Þtness functionF , not by the actual
Þtness values themselves.

3. Online SparsiÞcation

The idea of online sparsiÞcation is to exploit this prop-
erty of CMA-ES. LetFs be a sparsiÞed version ofF , in
which only a random subsetVs of V is regarded, with
|Vs| = s|V |, s ! (0, 1]. For s = 1 , Fs equalsF , but
for anys < 1, Fs will start to differ fromF the lowers is
chosen, as less vertices are used for the synthesis, leading
to a sparsiÞcation error. But ifs is chosen in a way that will
induce a sparsiÞcation error small enough such that it does
not change the order of the samples induced byFs in each
iteration, the sparsiÞcation will have no effect at all at the
optimization. Although in practice, the missing knowledge
aboutF and the random selection ofVs does not allow to
provide a guaranteed preservation of order betweenF and
Fs, it is expedient to investigate the probability of such an
order change happening and how to maintaining a low prob-
ability throughout the optimization.
Let the image of a Gaussian distributionN (mi , �2

i Ci ) in F
be approximated by a Gaussian distribution as well (Fig.2),
then the local variance ofN (mi , �2

i Ci ) ( F can be noted as
$�2

i Ci $F . The notation as a norm implicitly assumesF to
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Fs

m

! 2C

! <µ

! ! µ

Fs(! <µ )Fs(! ! µ )

Figure 3. In contrast toF (Fig. 2), the sparsiÞed Þtness function
F s introduces an uncertainty to the results, which is modeled as a
Gaussian distribution (lower part) for everyF s(! ).

be linear, which is in general not the case, but serves well in
this local approximation context, as locally linear approxi-
mation is one of the basic tools of many optimization algo-
rithms.
To calculate the probability of the sparsiÞcation causing a

change in order (see Fig.3), it is expedient to take a look at
the simplest case, i.e.," = 2 andµ = 1 , such that! 0 and
! 1 are the only individuals (see Fig.4). The probabilityp
of an order change through sparsiÞcation is notated as

p = P(F (! 0) > F (! 1), Fs(! 0) < Fs(! 1)+

P(F (! 0) < F (! 1), Fs(! 0) > Fs(! 1) (16)

= P(F (! 0) < F (! 1)|F s(! 0) > Fs(! 1)

The expected distance betweenF (! 0) andF (! 1) can be
approximated by a Gaussian distribution, which is

d = F (! 0) ! F (! 1) " N (0, 2#! 2C#F )) . (17)

Analogously, the distanceds between the sparse Þtness
functions is given by

ds = Fs(! 0) ! Fs(! 1) " N (0, 2#! 2C#F s )) . (18)

It can be seen easily, that the probability of the sparsiÞcation
causing a change of order is the same probability ofd and
ds having different signs:

p = P(F (! 0) < F (! 1)|F s(! 0) > Fs(! 1)
= P(sign(ds) $= sign(d)) .

(19)

This can be visualized by the intersecting Integrals of the
probability density functions (see Fig.4). To calculate the
integral, it is convenient to rewriteds as

ds = d + " s (20)

Fs

m

! 2C

! 0

! 1

Fs(! 0)Fs(! 1)

Figure 4. The intersection of the probability densities ofF (! 0)
andF (! 1) visualizes the probability of a change in order caused
by sparsiÞcation.

with " s " N (0, 2! s), which leads to the implication of

p = P(sign(ds) $= sign(d))

= P(|" s| > |d|)P(sign(" s) $= sign(d)) (21)

=
1
2

P
!

|" s|
|d|

> 1
"

.

As the distribution is Gaussian, combining (17) and (21)
yields

p =
1
2

# "

1
N (0,

! s

#! 2C#F
). (22)

Although (22) cannot be calculated directly, known dis-
crete evaluations (e.g.,! -bounds) of the distribution integral
can be used as upper limits for an estimation. As an exam-
ple, one might want only a chance of one in hundred of an
order change to happen (p < 0.01). The2! -bound of the
normal distribution yields a probability of about0.03. As

0.03 % 1 !
# 2

# 2
N (0, 1) = 2

# "

2
N (0, 1), (23)

implies that

0.015%
# "

1
N

!
0,

1
2

"
, (24)

the requested probabilityp < 0.01 is given if p % 0.0075,
which implies that

0.015% 2p =
# "

1
N (0,

! s

#! 2C#F
), (25)

which holds true if

! s

#! 2C#F
=

1
2

. (26)

5

Fig. 2. Left: The Þtness function F calculates a scalar Þtness valueF (⇥) (lower
part) for every individual ⇥ ! N (m, " 2C) (upper part). The image " " 2C" F of the
distribution in parameter space is visualized in blue. Right: In contrast to F (left), the
sparsiÞed Þtness functionF s introduces an uncertainty to the results, which is modeled
as a Gaussian distribution (lower part) for every F s(⇥).

provide a guaranteed preservation of order betweenF and Fs, it is expedient to
investigate the probability of an order change happening and how to maintaining
a low probability throughout the optimization.

For the following derivation we assume that the images of theN (! , #2C)
distributed parameter vectors in F also follow a gaussian distribution (cf. Fig.
2 left). In general this assumption does not hold sinceF depends on the input
images and is often neither monotone nor continuos. However, since we are only
interested in investigating the probability of an order change of two parameter
vectors ! i , ! i +1 , with F (! i ) > F (! i +1 ), it is su"cient to investigate F in a
local neighborhood of! i , in which we can approximateF linearly. Therefore, let
$#2C$2

F denote the covariance of the image distribution inF .
For sake of simplicity, let " = 2 and µ = 1, so that ! 0, ! 1, with F (! 0) >

F (! 1), are the only individuals of the population. Let d = F (! 0) & F (! 1) and
ds = Fs(! 0) & F s(! 1) be the distances of the projections under the original and
the sparse Þtness function, respectively. IfF (! ) and Fs(! ) are gaussian, thend
and ds are also gaussian withd ' N (0, $#2C$2

F ) and ds ' N (0, $#2C$2
F s

). It can
be seen easily, that the probability p of an order change betweenF (! 0), F (! 1)
and Fs(! 0), Fs(! 1) is equal to the probability that d and ds have di!erent signs.
This can be visualized by the intersecting Integrals of the probability density
functions (Fig. 2 right). To calculate the integral, it is convenient to rewrite ds

as ds = d + $ s with $ s ' N (0, 2#2
s ). With this we can write

p = P(|$ s| > |d|)P(sign($ s) *= sign( d)) (4)

=
1
2

P
+

|$ s|
|d|

> 1
,

(5)

=
1
2

- $

1
N

+
0,

#2
s

$#2C$2
F

,
, (6)
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where P(A) denotes the probability of the event A to occur. Although the in-
tegral in equation 6 cannot be calculated directly, known discrete evaluations
(e.g., #-bounds) of the distribution integral can be used as upper limits for an
estimation (e.g. p < 0.01). The 2#-bound of the normal distribution yields a
probability of about 0 .03. Using

0.03 + 1 &
- 2

! 2
N (0, 1) = 2

- $

0
N (0, 1), (7)

the requested probability p < 0.01 is given if #2
s $#2C$! 2

F = 1
2 . During the

optimization $#2C$2
F is provided by the variance of the calculated Þtness values

in every iteration, therefore to su"ce p < 0.01, s should be choose such that#2
s

satisÞes

#2
s =

$#2C$2
F

2
. (8)

For CMA-ES to work properly, more than two individuals are required. To ac-
count for that, the probability of an order change has to be evaluated for every
pair of individuals, except for the combinations in which both individuals are
weighted zero. As the probabilities are equal for each combination of individuals,
the extensions to more than two individuals can be done by making use of the
number of pairwise comparisons

n =

!

"
" ! 1#

j =1

j &
µ ! 1#

j =1

j

$

% =
" ! 1#

j = µ

j, (9)

which leads to an overall probability of

pn =
n ! 1#

k=0

(1 & p)k pk , (10)

that can be approximated by pn + np for small p. For example with a popula-
tion of size eight, the probability of an order change is approximately 6% when
choosing#2

s according to (8). To change this probability, the #-bounds need to
be chosen accordingly.

The relationship betweens and #2
s depends on the input images and therefore

is very complex. Since evaluating#2
s by discrete probes in every iteration to

estimate s is computational very expensive, we developed a heuristic to adapts
to the current requirement of the optimization by choosing s such that s , 1

# .
In the next section we show that we can obtain a speedup of eight and higher
using this heuristic as compared to a static sparse synthesis.

4 Evaluation

To analyze the potential of adaptive sparsiÞcation, practical tests have been
performed using a publicly available 313 frame RGB-D input sequence2 with
2 RGB-D sequence available at http://cvlab.epfl.ch/data/dsr

http://cvlab.epfl.ch/data/dsr
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Fig. 3. Color input data of the deformation tracking method (top row) along with the
deformed referenced model from a rotated point of view (bottom row).

ground-truth data (see Fig. 3). The input sequence comes with a set of a few
hundreds 3D-to-2D correspondences between points inside a reference mesh and
the input image for each frame. By deforming the reference mesh using the
deformation function resulting from the tracking and by using the 2D image
coordinates to obtain the true camera measurements, the absolute tracking error
in mm can be computed. A NURBS-based deformation function was used as
described in [14] such that the parameter space ofD contains the control point
positions in mm.

4.1 Induced Inaccuracy

When the adaptive sparsiÞcation is applied in practice, the rate of induced order
changes is not necessarily a good way to analyze the possible beneÞts, also
because low order change probabilities can only be obtained for high# or a
large number of individuals, which in turn increases the workload.

The far more interesting question is, to what extend does a sparsiÞcation
induced order change inßuence the overall optimization process. Figure 4 (left)
depicts the Þtness values during the optimization, performed using di!erent spar-
siÞcation rates, averaged over all frames of the input sequence. It shows that even
high sparsiÞcation rates (i.e. smalls) do not inßuence the optimization process
in the early and middle stages much. However, in the Þnal optimization process
the lack of accuracy clearly prevents the sparse Þtness function from reaching a
precise optimization goal (see Fig. 4 left, zoomed area).

The beneÞt of sparsiÞcation becomes more visible when the optimization pro-
cess is plotted over equivalent computational work rather than iteration counts.
As a Þtness function evaluation ofF0.01 only takes 1% of the computational
work compared to F , this sparse optimization can perform 100 iterations in the
same time as one full synthesis iteration is performed. Figure 4 (right) depicts
the same data but plotted over actual computational work, equivalent to one
iteration with the full vertex set. Hence, to exploit high precision and e"cient
evaluation, the sparsiÞcation rate should be adapted during the optimization
process. Equation (8) motivated the linear coupling of the sparsiÞcation rate
s to #. Figure 4 (dashed orange) shows the Þtness function for the case that
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Fig. 4. The optimization process averaged over the complete 313 frame sequence de-
picted in Fig. 3. Left: the Þtness value for the sparse vertex set during the optimization
for various sparsiÞcation rates, plotted over the number of iterations. The last 25 it-
erations are zoomed to better visualize the di"erences between the sparsiÞcation rates
at the late optimization stage. Right: the same Þtness values as on the left but plotted
over the actual computational work instead of iterations.

the sparsiÞcation rate is chosen such thats , 1
# . This online adaptation of the

sparsiÞcation rates provides an optimization result as accurate as the synthesis
using the full vertex set, but using less than 10% of the computational work.

Besides from lowering the number of vertices that are evaluated in each
iteration, low sparsiÞcation rates also act as a damping factor for the search
range#: In each iteration a new subset of vertices is randomly chosen. Therefore,
if CMA-ES discovers a local minimum of the Þtness function in one iteration,
it might not be a minimum in the following iteration, where a di!erent subset
is evaluated. If in one iteration of CMA-ES two or more individuals with non-
neglectable distances in the parameter space have equally low Þtness values, the
population search range# increases. Therefore, an increasing# indicates that the
optimization process hit several local minima, whereas a decreasing# indicates
that it converges into a single minimum. Figure 5 (right) depicts the progress
of # over the optimization process for various sparsiÞcation rates, averaged over
all frames of the input sequence. The search range rapidly increases in the Þrst
optimization stage for all sparsiÞcation rates and then converges until the end of
the optimization. The peak for low sparsiÞcation rates is signiÞcantly lower than
for the higher ones, resulting in a narrower search space. As a consequence the
global minimum is not found and therefore the optimization process becomes
less accurate (cf. Fig. 4 left). For the adaptive sparsiÞcation this is not the case.
The coupling s , 1

# prevents the optimization to converge prematurely to a local
minimum.

4.2 Results

Figure 4 (right) already shows the e!ectiveness of adaptive sparsiÞcation dur-
ing the optimization on real data. Figure 5 (left) illustrates the tracking error
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Fig. 5. Left: Tracking error for each frame in the input sequence in mm for 100%, 1%
and adaptive sparsiÞcation. Right: " s during the optimization process, averaged over
all frames, depicted for various sparsiÞcation rates.

for each frame of the input sequence, for the full vertex set synthesis, for a
1% sparsiÞcation and for the adaptive sparsiÞcation. In average all three vari-
ants perform equally well: (full vertex set: 5.23mm ± 2.67mm, 1% sparsiÞcation:
5.37mm ± 2.55mm, adaptive sparsiÞcation: 5.28mm ± 1.83mm), but the adaptive
sparsiÞcation has the lowest standard deviation. To compare our results with the
approach in [27], we also computed the depth and the 2D-displacement3 errors
separately4. The mean depth errors are 3.38mm ± 0.091, 3.48mm ± 1.03mm
and 3.42mm ± 0.91mm, for the full vertex set, for the 1% sparsiÞcation and
for the adaptive sparsiÞcation, respectively. The 2D-displacement errors are
3.28mm ± 2.63mm, 3.35mm ± 2.40mm and 3.29mm ± 1.71mm. As a compar-
ison5 Xu et al. in [27] achieved higher mean depth and displacement errors of
over 5mm.

5 Conclusion

This article introduced a novel approach to increase the e!ectiveness of the
sparse synthesis used in AbS deformation tracking. The method uses random
adaptive sparsiÞcation to adjust the number of reference model vertices to the
optimization status of the tracking algorithm. By coupling the sparsiÞcation
rate to the distribution size, the accuracy of the synthesis is adapted to the
current requirement of the optimizer. Tests on publicly available real data have
been presented, showing large speed up capabilities (factor 8 and more) while
maintaining the accuracy of a full synthesis and also increasing the robustness.

3 Called registration error in [27].
4 Plots are available as supplementary materials.
5 Since there were no deÞnite numbers in [27] available, we roughly estimated a lower

bound based on the given Þgures 5 and 6.
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