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Abstract.  The tracking of deformation is one of the current challenges
in computer vision. Analysis by Synthesis (AbS) based deformation track-
ing provides a way to fuse color and depth data into a single optimization

problem very naturally. Previous work has shown that this can be done

very elciently using sparse synthesis. Although sparse synthesis allows
AbS-based tracking to perform in real-time, it requires a great amount of

problem specibc customization and is limited to certain scenarios. This
article introduces a new way of randomized adaptive sparsibcation of the
reference model that adjusts the sparsipcation during the optimization

process according to the required accuracy of the current optimization
step. It will be shown that the elciency of AbS can be increased signif-

icantly using the proposed method.

1 Introduction

Pose estimation and 3D object tracking are major research areas in computer
vision for more than 40 years. Traditionally a two-stage approach is applied,
where brst images are analyzed using edges, features, or optical Bow, and next
the features are used to calculate a result. The benebt of this two-stage approach
is a mathematically sound formulation since the problem is reduced to aligning
corresponding feature locations within the image.

However, if the reconstruction task is extended to the non-rigid case, the fun-
damental constraint allowing such a sound formulation is often removed. The
continuous improvement of depth cameras in the last 20 years and especially
the appearance of the Microsoft Kinect in 2010 has enriched the family of re-
construction algorithms by depth-image based approaches, which in many cases
diler signibcantly from color image based reconstruction. Although for the rigid
case mature reconstruction [12] and people tracking [23] techniques are available,
generic deformation reconstruction still remains subject to research. Since depth
images provide dense distance information, and color images allow to deduce
lateral movements, a combination of both sensor types yields a powerful tool to
allow ambiguity free deformation reconstruction.

Color and depth information are not easily combined, hence a joint problem
formulation is di"cult when following the traditional two-stage reconstruction
using features. A class of algorithms bypassing the fusion problem is Analysis by
Synthesis [14] (AbS, sometimes also referred to as Odirect methodsO). Instead of
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deducing a solution in multiple stages from the input image, the optimization
problem is formulated as Pnding parameters for a scene model that generates
artibcial sensor images, which bt the real input images best. A lot of inherent
reconstruction problems are circumvented this way, including the fusion of vari-
ous input entities. As long as input data of a sensor can be synthesized, the joint
problem formulation is straight forward. A disadvantage of AbS is the increased
computational work, since the evaluation of the objective function implies a
rendering process for every sensor involved and a global search, in many cases
without available dertivatives *, whereas feature correspondences allow local op-
timization on a function with known derivatives. The key to e"cient AbS is the
combination of a fast synthesis, based on partial, OsparseO synthesis [13], and an
e"cient global optimization scheme. Such a system can even track deforming
objects in real-time [24].

In this article, a new way of synthesis sparsibcation for AbS system is in-
troduced that circumvents the need for manual reference object sparsibcation,
provides automatic adjustment of the synthesis implicitly regarding the refer-
ence object complexity, and improves the overall AbS performance signibcantly.
Experiments show a potential speed up of factor 8 and more compared to the
established sparse synthesis.

1.1 Related Work

Deformation tracking in combined depth and color (RGB-D) video is a research
area that has not been investigated as much as deformation tracking in color
video or depth video alone. A lot of research has been carried out on color-
based deformation tracking using Non-Rigid Structure from Motion (NRSfM),
which was introduced by Bregler et al. [3] as an extension to Structure from
Motion (SfM) [25] by a set of deformation spaces, and it has been extended over
the years [5,6,26]. Like the original SfM, NRSfM utilizes 2D feature movements
to formulate a convex minimization problem which is solved using local (least-
squares) optimization methods. This allows to simultaneously recover camera
position, object shape, and deformation. If the initial object shape is already
known, Salzmann et al. [21] proposed a method that utilizes the object geometry
as a deformable triangle mesh, rather than relying on linear deformation spaces.
For the multi-camera case, Cagniar et al. [4] introduced a method that is able to
track complex human deformation spaces if the background can be subtracted
in the input footage. Similar to the multi-camera tracking of Rosenhahn [20],
it utilizes the object contour in the input data as well as feature movements to
align the tracking target with the input image.

The problem of deformation tracking in depth data is handled in a very dif-
ferent way by most algorithms, as depth images provide less information that
can be used to generate correspondences, such as features. Hence, algorithms
relying on depth features do only provide good results for small deformations

1 One exception can be found in [7], where the derivatives of the reprojection error
are calculated for a multi-view stereo setting.
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Fig. 1. Overview of the Analysis by Synthesis approach. A reference object is deformed
by a deformation function D using a estimated parameter vector ! . The sensor set
S synthesizes artibcial images which are compared to the input images by a btness

function F. The btness value is used by the optimizer (CMA-ES) to generate a rebned
.

[17]. The main advantage of range data over color is its ability to reconstruct
a 3D model of the observed scene for every frame, allowing it to directly track
deformations in 3D space. Algorithms like [18] perform local, ICP-like [2] shape
btting combined with global smoothness enforcement. Tracking human poses in
a depth camera is already well understood and can be solved by machine learn-
ing approaches [23]. For many specialized tasks, e.g., skeleton based tracking
[10], hand tracking [19,22] real-time solutions are available, as well as for generic
models and deformations if they are small enough such that a local, hierarchical
optimization can be applied [28]. Xu et al. [27] expressed non-rigid object track-
ing in RGB-D video as an inference problem in a Conditional Markov Random
Field using deformable patches to represent the observed surface. This way they
removed the requirement of the tracking target to be completely visible in the
prst frame. In [11] Innmann et al. combine color feature tracking with a depth-
based constraint formulation to dynamically reconstruct geometric shapes from
a single RGB-D sensor at real-time.

The remainder of this article is organized as follows: section 2 summarizes
the AbS tracking approach and the sparse synthesis as introduced in [13,14],
section 3 proposes the new adaptive sparsibcation method and introduces an
approximation algorithm to estimate the inaccuracy induced by sparsibcation.
Section 4 evaluates the proposed method on real data with known ground-truth
and section 5 concludes this article.

2 Analysis by Synthesis

The AbS concept is a generative, model-driven approach that dilers from tra-
ditional reconstruction problem formulations in many key aspects. Input images
are not analyzed and processed, instead, a parameter space is established that
allows to express the solution as a parameter vector within this search space. A
solution guess (model parameters) can be evaluated by synthesizing the input



4 S. Reinhold, A. Jordt, R. Koch

images given the solution candidate and comparing it to the real input (see Fig.
1). This approach can be e"cient, if the synthesis is not performed by standard
rendering, but in a sparse way [24]. An in-depth introduction to AbS used for
deformation reconstruction can be found in [14].

Let M be a textured triangle mesh serving as a reference object for the AbS
tracking. Sparse synthesis reduces the triangle mesh information given by to
the indexed set of verticesV = {vi;}! R?® and their corresponding texture color
C={g}! [0,255F. A deformation parameter ! is evaluated as follows:

Given a set of SensorsS, let the input image be given as a functionl" :
R? " [0,255] and Ié” :R?" R for each color sensolc # S and depth sensor
d # S, respectively. Let further Ps : R® " R? denote the projection function
for sensors, mapping 3D points to the image plane. LetD, : R®" R3 be a
deformation function parameterized by! . Then the RMS error for a color sensor
Sc IS

! $| 1
2

#
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where %denotes function composition. The depth error can be debned accord-
ingly. But since using an absolute depth error would make the error measure
dependent on the scene scale, we debne the relative RMS depth error for a
depth sensorsy as follows:
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where Og, is the camera center of sensosy. In addition to providing invariance
to scene scale, this error formulation implicitly regards the accuracy of depth
sensors, which usually decreases with distance. A more sophisticated error for-
mulation, exploiting an explicit noise model can be found in [15].

The error sum of all sensors can be debned as a btness function

#
F()= "se(!) 3
s"S
using weights" s # R, o for each sensos, which can either be found manually, by
automatic adjustment [14], or by deriving them from the probability distribution
of the measurements of each sensor [16]. Additional constraints or regularization
terms can be added to the btness function depending on the task at hand.

The tracking can now be formulated as an optimization problem:!' =
argminF (! ), which is solved using the Covariance Matrix Adaptation - Evolu-
tion Strategy (CMA-ES) optimization scheme [9]. It proved to be very suitable
for this class of problems, since it is coordinate system independent, derivation
free, very economical with respect to the number of necessary btness function
evaluations, while still being able to Pnd global optima in noisy and non-convex
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environments [1]. The optimization scheme falls into the class of distribution-
based optimizers. For every iteration, a set of samples (parameter vectors)

is distributed with respect to a multivariate Gaussian distribution and evalu-

ated by the btness functionF . Using the btness of each parameter vectdF (! ),

the Gaussian distribution is updated such that it maximizes the probability of

producing higher btness values in the next iteration.

The combination of a fast implementation of F and the e"cient CMA-ES op-
timization allows to track deformations in real-time. A crucial parameter when
tuning the AbS framework for a real-time tracking task is the degree of sparsi-
pcation, as the evaluation time of each iteration has a linear relationship to the
number of vertices used in the sparse synthesis. Too few vertices will cause the
optimization to loose accuracy, while too many vertices cause long optimization
times.

In each iteration i of the CMA-ES, a new population of parameter vec-
tors {!ij }j=0,.» 1 1 is sampled, so that!;; ' N (T 1,#5 1Cir 1), for all j =
0,...," &1, where!;, 1, #2 ; and C;, ; are the population mean, variance and
normalized covariance matrix (i.e. detC = 1) of the last iteration, respectively
and " # N, is the population size. The btness function is then evaluated for
each individual and the parameter vectors are sorted with respect to their btness
values. For easier notation (w.l.0.g), let the parameter vector indices match their
btness rank, that isF (o) (F ('i1) (a&da (F (i 1). To calculate a new
mean, the sorted parameter vectors are weighted by a weight vectow # [0, 1] ,
with wo ) w; ) 444 ) w-, 1 and $w$, = 1. Evolutionary selection is imple-
mented by setting the brst u # N weights to zero. The selection indexu is usu-
ally setto p = 5 and the non-zero weights are chosen in a linear,or logarithmic
fashion [8]. The new population mean is then computed a$; = pWilina.
The new covariance matrix C; is compiled from the old covarianceC;, 1, the
sample covariance of the current distribution and the distribution C! along the
recent path of movements in the parameter space. For further details refer to

9.

3 Adaptive Sparsibcation

The idea of adaptive sparsibcation is to exploit an important property of the
CMA-ES: The distribution at iteration i around a mean!; is completely cal-
culated from ordered sample positions and the updaté ;; ; " !; and therefore
solely depends on the order induced by the btness functioR and not by the
btness values themselves.

Now let F¢ be a sparsibed version of , in which only a random subsetVs of
V is regarded, with |Vs| = s|V|, s # (0, 1]. The larger the sparsibcation rates' *,
the likelier it is that Fg deviates fromF introducing a sparsibcation error. But
if sis chosen in a way that induces a sparsibcation error small enough such that
it does not change the order of the samples induced bfs in each iteration, the
sparsibcation does not alect the optimization at all. Although in practice the
missing knowledge aboutF and the random selection ofVs does not allow to
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Fig.2. Left: The btness function F calculates a scalar btness valueF (®) (lower
part) for every individual @ ! N (m," 2C) (upper part). The image ""2C"g of the
distribution in parameter space is visualized in blue. Right: In contrast to F (left), the
sparsibed btness functionFs introduces an uncertainty to the results, which is modeled
as a Gaussian distribution (lower part) for every Fs(@®).
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provide a guaranteed preservation of order betweelr and Fg, it is expedient to
investigate the probability of an order change happening and how to maintaining
a low probability throughout the optimization.

For the following derivation we assume that the images of theN (I, #°C)
distributed parameter vectors in F also follow a gaussian distribution (cf. Fig.
2 left). In general this assumption does not hold sincé= depends on the input
images and is often neither monotone nor continuos. However, since we are only
interested in investigating the probability of an order change of two parameter
vectors !, i, with F(!) > F(!i+1), it is su"cient to investigate F in a
local neighborhood of! i, in which we can approximateF linearly. Therefore, let
$#2C$2 denote the covariance of the image distribution inF .

For sake of simplicity, let " = 2 and u = 1, so that !g,! 1, with F(! o) >
F (! 1), are the only individuals of the population. Let d = F(!¢) &F (! 1) and
ds = Fs(! o) & Fs(! 1) be the distances of the projections under the original and
the sparse btness function, respectively. IF (! ) and F¢(! ) are gaussian, thend
and ds are also gaussian withd ' N (0, $#2C$Z)and ds ' N (0, $#°C$2 ). It can
be seen easily, that the probability p of an order change betweerF (! o), F(! 1)
and Fs(! o), Fs(! 1) is equal to the probability that d and ds have dilerent signs.
This can be visualized by the intersecting Integrals of the probability density
functions (Fig. 2 right). To calculate the integral, it is convenient to rewrite ds
asds = d+ $s with $5'N (0, 2#2). With this we can write

p= P(I$s| > |d)P(sign($ s) = sign(d)) (4)
_1n 8l
= éP |d|+> 1 (5)

T8

#2
N O, =

1
2, $#2C$ ©)
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where P (A) denotes the probability of the event A to occur. Although the in-
tegral in equation 6 cannot be calculated directly, known discrete evaluations
(e.g., #-bounds) of the distribution integral can be used as upper limits for an
estimation (e.g. p < 0.01). The 2#-bound of the normal distribution yields a
probability of about 0.03. Using
) T s
0.03+ 1& N(0,1)=2 N (0, 1), @)
12 0
the requested probability p < 0.01 is given if #2$#2C$-> = 1. During the
optimization $#2C$2 is provided by the variance of the calculated btness values
in every iteration, therefore to su"ce p < 0.01, s should be choose such tha#?
satisbes
2 2
= PT% @

For CMA-ES to work properly, more than two individuals are required. To ac-
count for that, the probability of an order change has to be evaluated for every
pair of individuals, except for the combinations in which both individuals are
weighted zero. As the probabilities are equal for each combination of individuals,
the extensions to more than two individuals can be done by making use of the
number of pairwise comparisons

! $
'#! 1 }#l 1 '#l 1
n=" j& j%= | 9)
j=1 j=1 i=u
which leads to an overall probability of
Mol
= (1&p)*p, (10)
k=0

that can be approximated by p, + np for small p. For example with a popula-
tion of size eight, the probability of an order change is approximately 6% when
choosing#2 according to (8). To change this probability, the #-bounds need to
be chosen accordingly.

The relationship betweens and #2 depends on the input images and therefore
is very complex. Since evaluating#? by discrete probes in every iteration to
estimate s is computational very expensive, we developed a heuristic to adaps
to the current requirement of the optimization by choosing s such that s , %.
In the next section we show that we can obtain a speedup of eight and higher

using this heuristic as compared to a static sparse synthesis.

4 Evaluation

To analyze the potential of adaptive sparsibcation, practical tests have been
performed using a publicly available 313 frame RGB-D input sequencewith

2 RGB-D sequence available athttp://cvlab.epfl.ch/data/dsr
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Fig. 3. Color input data of the deformation tracking method (top row) along with the
deformed referenced model from a rotated point of view (bottom row).

ground-truth data (see Fig. 3). The input sequence comes with a set of a few
hundreds 3D-to-2D correspondences between points inside a reference mesh and
the input image for each frame. By deforming the reference mesh using the
deformation function resulting from the tracking and by using the 2D image
coordinates to obtain the true camera measurements, the absolute tracking error
in mm can be computed. A NURBS-based deformation function was used as
described in [14] such that the parameter space dD contains the control point
positions in mm.

4.1 Induced Inaccuracy

When the adaptive sparsibcation is applied in practice, the rate of induced order
changes is not necessarily a good way to analyze the possible benebts, also
because low order change probabilities can only be obtained for high or a
large number of individuals, which in turn increases the workload.

The far more interesting question is, to what extend does a sparsibcation
induced order change infBuence the overall optimization process. Figure 4 (left)
depicts the btness values during the optimization, performed using dilerent spar-
sibcation rates, averaged over all frames of the input sequence. It shows that even
high sparsibcation rates (i.e. smalls) do not inBuence the optimization process
in the early and middle stages much. However, in the Pnal optimization process
the lack of accuracy clearly prevents the sparse btness function from reaching a
precise optimization goal (see Fig. 4 left, zoomed area).

The benebt of sparsibcation becomes more visible when the optimization pro-
cess is plotted over equivalent computational work rather than iteration counts.
As a btness function evaluation ofFg o; only takes 1% of the computational
work compared to F, this sparse optimization can perform 100 iterations in the
same time as one full synthesis iteration is performed. Figure 4 (right) depicts
the same data but plotted over actual computational work, equivalent to one
iteration with the full vertex set. Hence, to exploit high precision and e"cient
evaluation, the sparsibcation rate should be adapted during the optimization
process. Equation (8) motivated the linear coupling of the sparsibcation rate
s to #. Figure 4 (dashed orange) shows the btness function for the case that
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Fig.4. The optimization process averaged over the complete 313 frame sequence de-
picted in Fig. 3. Left: the btness value for the sparse vertex set during the optimization
for various sparsibcation rates, plotted over the number of iterations. The last 25 it-
erations are zoomed to better visualize the di"erences between the sparsibcation rates
at the late optimization stage. Right: the same btness values as on the left but plotted
over the actual computational work instead of iterations.

the sparsibcation rate is chosen such thas , %. This online adaptation of the
sparsibcation rates provides an optimization result as accurate as the synthesis
using the full vertex set, but using less than 10% of the computational work.
Besides from lowering the number of vertices that are evaluated in each
iteration, low sparsibcation rates also act as a damping factor for the search
range#: In each iteration a new subset of vertices is randomly chosen. Therefore,
if CMA-ES discovers a local minimum of the btness function in one iteration,
it might not be a minimum in the following iteration, where a dilerent subset
is evaluated. If in one iteration of CMA-ES two or more individuals with non-
neglectable distances in the parameter space have equally low btness values, the
population search range# increases. Therefore, an increasing indicates that the
optimization process hit several local minima, whereas a decreasing indicates
that it converges into a single minimum. Figure 5 (right) depicts the progress
of # over the optimization process for various sparsibcation rates, averaged over
all frames of the input sequence. The search range rapidly increases in the pbrst
optimization stage for all sparsibcation rates and then converges until the end of
the optimization. The peak for low sparsibcation rates is signibcantly lower than
for the higher ones, resulting in a narrower search space. As a consequence the
global minimum is not found and therefore the optimization process becomes
less accurate (cf. Fig. 4 left). For the adaptive sparsibcation this is not the case.
The_ couplings, % prevents the optimization to converge prematurely to a local
minimum.

4.2 Results

Figure 4 (right) already shows the electiveness of adaptive sparsipcation dur-
ing the optimization on real data. Figure 5 (left) illustrates the tracking error



10 S. Reinhold, A. Jordt, R. Koch

Spavs\pcalion]7

—1 7
—05
—02 13
—0.1 12+
—0.05 14
—0.02
—0.01

Adapted

Tracking Error in mm

““““““ yw»wmAMwJLf“‘aw%‘\” Yo %

Frame

T T T T T
50 100 150 200 250 300
Iteration

Fig.5. Left: Tracking error for each frame in the input sequence in mm for 100%, 1%
and adaptive sparsipcation. Right: "s during the optimization process, averaged over
all frames, depicted for various sparsibcation rates.

for each frame of the input sequence, for the full vertex set synthesis, for a
1% sparsibcation and for the adaptive sparsibcation. In average all three vari-
ants perform equally well: (full vertex set: 5.23mm £ 2.67mm, 1% sparsibcation:
5.37mm x 2.55mm, adaptive sparsibcation: 528mm+ 1.83mm), but the adaptive
sparsibcation has the lowest standard deviation. To compare our results with the
approach in [27], we also computed the depth and the 2D-displacemehterrors
separately*. The mean depth errors are 338mm + 0.091, 348mm + 1.03mm
and 342mm + 0.91mm, for the full vertex set, for the 1% sparsibcation and
for the adaptive sparsibcation, respectively. The 2D-displacement errors are
3.28mm = 2.63mm, 3.35mm £ 2.40mm and 3.29mm + 1.71mm. As a compar-
isor® Xu et al. in [27] achieved higher mean depth and displacement errors of
over smm.

5 Conclusion

This article introduced a novel approach to increase the electiveness of the
sparse synthesis used in AbS deformation tracking. The method uses random
adaptive sparsibcation to adjust the number of reference model vertices to the
optimization status of the tracking algorithm. By coupling the sparsibcation
rate to the distribution size, the accuracy of the synthesis is adapted to the
current requirement of the optimizer. Tests on publicly available real data have
been presented, showing large speed up capabilities (factor 8 and more) while
maintaining the accuracy of a full synthesis and also increasing the robustness.

3 Called registration error in [27].

4 Plots are available as supplementary materials.

5 Since there were no debnite numbers in [27] available, we roughly estimated a lower
bound based on the given bgures 5 and 6.
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