
Real-time multi-stereo depth estimation on GPU with

approximative discontinuity handling

J. Woetzel and R. Koch

Institute of Computer Science and Applied Mathematics,

Christian-Albrechts-University of Kiel,

24098 Kiel, Germany

{jw, rk}@mip.informatik.uni-kiel.de

Abstract

This paper describes a system for dense depth es-
timation for multiple images in real-time. The al-
gorithm runs almost entirely on standard graph-
ics hardware, leaving the main CPU free for other
tasks as image capture, compression and storage
during scene capture.

We follow a plain-sweep approach extended by
truncated SSD scores, shiftable windows and best
camera selection.

We do not need specialized hardware and exploit
the computational power of freely programmable
PC graphics hardware. Dense depth maps are com-
puted with up to 20 fps.

Keywords:

Real-time multi view stereo, dense depth estima-
tion, programmable general purpose GPU, pre-
visualization.

1 Introduction

Dense stereo reconstruction has been an active field
of research for the last decades but still proposes
challenging research problems. In particular the
wide range of real-time applications require highest
possible quality with the additional constraint of a
hard restriction on the maximum processing time.

The wide range of applications range from navi-
gation and geometrical 3D modeling to depth com-
pensated image based rendering techniques. Cap-
turing a highly complex scene may fail due to light-
ing situation or missing details in the chosen cam-
era path. Our answer to this problem is live multi-

stereo depth-estimation with real-time monitoring
of scene capture and reconstruction. This allows
the user to see a 3D reconstruction on the fly.
Live-results are sufficient for pre-visualization and
pre-production planning. The final high-end cin-
ema production may require higher quality. Offline
post-processing can be used to refine the real-time
results with a robust fusion approach or a standard
offline reconstruction method.

Typical problems of stereo algorithms include
suitable handling of image noise, texture-less re-
gions, depth discontinuities and occlusions. Addi-
tional constraints arise in the multiple view case of
more than two cameras. For example points may
be occluded in some cameras only which can be
used to overcome occlusions. Non-overlapping field
of view can be considered as border effect for the
two view case. But in the multi-view case this has
to be handled explicitly for general camera config-
urations.

Availability of truly free programmable graphics
hardware has opened a very active field of research
motivated by the enormous processing power of
graphics cards. A simple comparison of the transis-
tor count of current CPU and GPU raises high per-
formance expectations with current graphic cards
processors. For example a Pentium 4 processor has
approx. 55 million transistors in comparison to ap-
prox. 125 million transistors of Nvidias Geforce
FX graphics cards[6, 10]. A quantitative compar-
ison [11] of sample implementations optimized for
GPU and CPU confirms the processing power ad-
vantage of GPU against CPU for special situations
but also detects bottlenecks like data transfer from
GPU to CPU. To conclude, with standard PC’s you

get a specialized high-performance DSP almost for
free which we will use in our approach to keep CPU
free for other tasks.

This document is structured as follows. We start
with an overview of related work. Then we will in-
troduce the used hardware architecture followed by
a description of our method. Results demonstrate
the suitability of our approach before concluding
remarks.

2 Related Work

Dense stereo algorithm have been explored for
decades. A complete state of the art description
is beyond the scope of this paper. We refer to a
recent comparison by Scharstein et. al. [13] for a
general overview.

Recent formulations as a global optimization
problem by scan-line Dynamic Programming [5]
and its 2D generalization by Graph Cut Minimiza-
tion [9] obtain good results. But they are too slow
for real-time applications because of their very com-
plex optimization scheme, even for approximative
iterative solutions. However, they are perfectly
suited for a post-processing offline refinement of our
real-time results similar to the approach presented
by Kang [7].

To achieve real-time performance with software
on CPU single instruction multiple data (SIMD) in-
structions like MMX and SSE were used. SIMD in-
struction sets allow parallel execution of lower pre-
cision data embedded into higher precision regis-
ters. A 32 bit register may be used to add four eight
bit number simultaneously, for example. Fastest
available CPU implementations are based on this
approach [4, 12].

Restrictions of the search range and resolution
affect performance directly. Assumptions on the
scene can be used to minimize search space for ex-
ample with pyramidal schemes [3].

In our approach we use the GPU efficiently to
compute, score and select the best depth hypothe-
ses for each pixel. Two algorithms exist that can
deal with real-time constraints implemented in cur-
rent graphics hardware [14, 15] and one with near
real-time performance [16, 17]

Our approach is closest to Yangs approach [15]
of multi-camera depth estimation. He is using a
fixed five camera configuration and multi-pass ren-

dering for estimation. He restricted his approach
to two-view geometry and combined it with an ag-
gregation of the dissimilarity measure by summa-
tion over a box-filtered LOD pyramid [14]. This
can be computed efficiently in hardware by auto-
mipmap generation, but not for free. Please note
that his first approach [15] is very sensitive to noise
due to his simple winner-take-all (WTA) optimiza-
tion with a small 1 × 1 support region. His second
approach [14] can neither handle depth discontinu-
ities correctly nor use more than two cameras.

The near-real-time approach of Zach et al. [16,
17] follows a different idea of iteratively refining a
scene representation by an approximative surface
triangulation. A regular grid for the point of view
of a reference camera is refined based on local dis-
similarity of stereo gray images. Their approach
uses a complex iteration scheme at the cost of per-
formance.

We follow the basic idea of a plane sweep algo-
rithm [2] and extended it to

• an arbitrary configuration of currently up to
eight cameras,

• dissimilarity measure truncation depending on
signal to noise ratio (SNR) to limit mismatch
and noise influence,

• a shiftable windows implementation,

• handling partial field of view overlap of multi-
ple cameras,

• and a ‘best n of m’ and best half-sequence
multi-camera selection to handle occlusions
partly correct.

In addition we extended the simple plane sweep
to a generalized sweep which can handle irregular
highly complex search spaces of arbitrary geometry
without loss of performance w.r.t hypothesis eval-
uations per second.

3 Hardware Architecture

It is important to understand the concepts of
current GPU architecture to develop and adapt
general purpose algorithms for implementation on
GPU hardware. First of all, the GPU supports

2

processor

primitivesvertices
+per vert. data

vertex

img. textures

selectorrasterizer
fragment
processor

frag.

compare
function(triangles,..)

Figure 1: Simplified flow of data through GPU ar-
chitecture pipeline from vertex processor via ras-
terizer to fragment processor. One or no fragment
is selected for final rendered pixel output.

vector operations (SIMD). Currently four compo-
nent vectors are natively supported without perfor-
mance loss. Secondly the architecture is pipelined
with a very restricted flow of data compared to
current CPU’s. A sketch of the GPU architecture
pipeline is illustrated in figure 1. And third, the
hardware is laid out in an extremely parallelized
fashion exploiting the above pipeline limitations.
For example, current consumer low-cost graphics
cards are designed with eight processor units work-
ing completely independent in parallel.

The instruction set is very restricted in compar-
ison to current CPU’s, but highly optimized. Most
instructions are executed within a single clock cy-
cle.

In the past, the graphics processor instruction set
was too limited to be freely programmable. It was
known as fixed function pipeline processors with
very limited programmability.

Current (fourth generation) graphics architec-
ture fulfills full programmability by true branching
and looping capabilities. A detailed technical de-
scription of current GPU hardware is beyond the
scope of this paper. We refer to the technical spec-
ifications of the main manufacturers [1, 10].

But it is important to understand the concept of
four main stages illustrated in figure 1.

1. Vertex processing. Input is one vertex with a
restricted set of associated per vertex param-
eters. For example per vertex color or texture
coordinate and additional parameters constant
for all vertices like scalars, vectors and texture
maps. Every input vertex generates exactly
one output vertex controlled by a vertex pro-
gram.

2. The Rasterizer is interpolating tessellated ver-
tices and associated per vertex data linearly

into fragments. These fragment are potential
pixels for a given viewing frustum projection.
This is a very efficient (bi-)linear interpolator
used for barycentric weighting, for example.

3. The Fragment processors input are the frag-
ments generated by the rasterizer. A fragment
can be thought of as a potential pixel on screen
manipulated by a fragment program. Pro-
grammability and parameters for vertex-and
fragment program are comparable.

4. Final stage selects one fragment projected into
each screen pixel (or rejects all fragments). For
example the nearest fragment could be selected
by its depth value.

Please note that one input vertex is generating
exactly one output vertex and one input-fragment
is generating exactly one output-fragment. All ver-
tices (and fragments) are processed in parallel and
independently of any other. No order of process-
ing is guaranteed. In particular each screen pixel is
generated independently of its spatial neighbors.

Current hardware supports freely programmable
vertex and fragment processing but the rasterizer
is a fixed function unit supporting only linear inter-
polation between support points defined by vertices
and primitives such as triangles, lines and points of
a specified geometry.

For highest performance one should avoid too
heavy computations in the fragment processor. All
operations that can be linearly interpolated by the
rasterizer should be moved to the vertex processor
for most efficient use of the pipeline.

In our case of a high number of fragments (poten-
tial pixels) and a smaller number of vertices (trian-
gles) the fragment processor is usually limiting the
pipeline performance.

Current graphics cards have a very wide mem-
ory bus (AGP) to transfer data from main memory
to graphics memory, but only a small bus (PCI)
to transfer back. However, we expect this bottle-
neck to be solved with the availability of the new
PCI Express Bus capable visual processors.

4 Our Method

We address the problem of assigning each pixel of
a reference camera a depth (or 3D scene point),

3

known as the stereo problem. Stereo algorithms
can be divided into four major steps [13]

1. computing a per pixel matching cost (e.g. for
pixel pairs),

2. aggregation of cost over support region (e.g.
3 × 3),

3. disparity or depth computation based on se-
lection and optimization,

4. refinement and post-processing.

In this contribution we address the multi-stereo
problem for multiple color input images in a known
but arbitrary camera configuration. The above
stages describe the two-view case. For the multi-
view case we introduce an additional multi-camera
scoring stage which exploits multi-view constraints
described in section 4.4.

Please note that we do neither need rectified im-
ages nor a fixed internal calibration or equal image
sizes. We follow the idea of a generalized sweep
approach to compute a depth map for a reference
camera. Any virtual camera may be used as refer-
ence, in particular one of the input real cameras.

4.1 Projection

Each camera can be described by its mapping from
3D world coordinates to 2D image coordinates. The
mapping of a scene point X into an image point x

by a camera can be modeled by a projection matrix
P as

x = PX. (1)

The corresponding intensity values I(X,i) for all
cameras Pi with associated image textures texi can
be obtained by standard projective texture lookup
as

I(X,i) = tex (PiX) (2)

Our task is finding the most probable depth d =
|X − C|L2 for a pixel x on a ray through the pixel
x itself and a reference cameras projection center C.
Projective texture mapping of the vertex processor
and projective texture lookup in the fragment pro-
gram is performed very efficiently in hardware.

4.2 Matching Cost

If there is a scene surface at X, then the inten-
sities I(X,i) are similar for all cameras Pi, known
as the photo-consistency constraint. This holds at
least for diffuse, non-occluded scene points, as we
assume. We use the squared intensity difference
(SD) to measure the dissimilarity between two in-
tensity scalars sk,sl

SD (sk, sl) = (sk − sl)
2
. (3)

The scalar dissimilarity measure for a pair of color
values a = (a0, a1, a2), b = (b0, b1, b2) can be com-
puted as sum of SD over all channels

SSD (a, b) =
∑

c∈channel

SD (ac, bc) . (4)

This local measure with a small 1 × 1 support of
only one color value is susceptible to noise and lacks
discrimination in texture-less regions.

Yang et. al. compensated this partially by com-
paring a base camera against multiple destina-
tion cameras by summation of the SSD pairs
(SSSD) [15]. We extend this approach without sup-
port region increase by a customized multi-camera
scoring described in section 4.4.

In addition we use truncated SSD scores (TSSD)
to limit the influence of outliers due to image noise
and non-diffuse surfaces. The SNR can be adapted
locally but for state-of the art cameras it is suffi-
cient to assume a small a priori known SNR. Over-
flow problems are avoided by this thresholding, too.

TSSD (a, b) = min (threshSNR, SSD (a, b)) (5)

In addition spatial aggregation of the dissimilarity
can be used to make the estimation more robust at
the cost of additional rendering passes.

4.3 Spatial aggregation over support

region

Summation of the matching cost in a window or
a weighted summation for example by a Gaussian
filter ’smearing’ can be used to aggregate spatial
neighboring dissimilarity measures into one more
robust score. This is equivalent to filtering with a
box- or Gaussian 2D filter in the dissimilarity im-
age. Yang followed this approach for the two-view
case [14] with an approximation of a symmetrical

4

Gaussian filter centered on the reference position
x. An approximation of this filtering can be com-
puted efficiently in hardware by summation over
multiple levels of the dissimilarity images mipmap
pyramid (MML). However, it is important to point
out that the mipmap box filter is applied correctly
only on modulo power-of-two coordinates (2level)
for each mipmap level. Their approximative Gaus-
sian depends implicitly on the pixel position. The
support region is slightly shifted around each pixel
depending on the pixels distance to next power of
two position.

It is also important to note that aggregation by a
centroid filter implicitly assumes piecewise contin-
uous frontoparallel scene surfaces. Slanted surfaces
and depth discontinuities are not handled correctly.
In addition the creation and summation of mipmap
levels in hardware is computationally not for free.
It is efficient only because of decreasing number of
pixels with every pyramid with a maximum total
overhead of 33 % extra pixel for a complete pyra-
mid.

We follow a different approach to make depth es-
timation more robust. Instead of centroidal spatial
’smearing’ SSD scores by support region filtering we
follow a best n of m multi camera selection scheme
and the idea of of spatially shiftable windows with
approximative correct depth discontinuity handling
similar to the CPU implementations of Kang [7]
and Hirschmueller [4].

The idea is that the scene is continuous in at
least one of the multiple windows around the cen-
tral point, see figure 2. This can be computed very
efficiently in hardware by summation of four values
with a single bilinear texture lookup shifted from

x with an offset of
√

1
2 pixel in diagonal directions.

This idea can be used for arbitrary size aggrega-
tion windows in additional rendering passes. An
arbitrary size 2n × 2m window can be summed
with nm bilinear texture lookups plus arithmetic
instructions for the summation.

Please note that our approach is neither lim-
ited to power-of-two texture size nor coordinates,
because we do not need recursive box-filtering by
mipmapping. We can handle rectangle textures
of arbitrary size1 and avoid extra overhead for
padding arbitrary size to next power-of-two size.

1limited by hardware and video memory (currently
max. 4096 × 4096.)

�����
�����
�����

�����
�����
�����

x

Figure 2: SSD is computed at positions marked
by squares. Left: Four shiftable windows in 8-
neighborhood of center x can be summed very ef-
ficiently independently by bilinear texture lookup
at diagonal positions marked by circles. Depth
discontinuities horizontal,vertical and diagonal are
handled correctly by at least one of the windows.
Right: Arbitrary 2n× 2m windows are summed by
nm bilinear texture lookups .

The assumption of continuous surface in one of
the diagonal directions is an approximative simpli-
fication for occlusion handling. But it can be com-
puted without major performance loss and is han-
dling occlusions better than the original approach.

For the two-view case right-left consistency test-
ing may be used to reduce mismatches. However,
currently we do not follow this approach because it
is an expensive operation which in particular does
not scale well for for the multi-view case. We can
handle occluded regions only approximately cor-
rectly, but we overcome semi-occluded regions vis-
ible in at least two cameras using more than two
cameras. The main goal of this approach is keep-
ing depth discontinuities sharp. Halo-effects and
depth blurring due to the size of the support re-
gion is avoided.

Different viewpoints of the cameras result in
affine distortions of the support region of the dif-
ferent cameras. Small baseline and small support
regions can be used to limit this effect. We use a
different approach to improve the estimation with-
out support region increase which we describe in
the next sections.

One should notice that current GPU architecture
can handle only two texture accesses per texture
unit in a single cycle. Support regions of arbitrary
size can be handled, but at the cost of performance.
For maximum performance we can substitute spa-

5

tial by temporal aggregation over the cameras de-
scribed in section 4.4. All depth hypotheses for all
rays can be handled independently in a single ren-
dering pass to avoid memory transfer even within
the GPU memory. In particular we do not need
intermediate rendering to a frame buffer or a tex-
ture for all depth hypothesis. The complete result
is rendered in a single but more complex rendering
pass for maximum performance.

However, this 1-pass approach is perfectly suit-
able only for 1× 1 support regions because dissim-
ilarity computations could not be shared between
fragments and may be computed twice for adjacent
fragments.

4.4 Multi-camera scoring stage

Multiple images can be used to enhance estimation
without increasing support region size and simulta-
neously accounting for occlusions and noise. Sim-
ple summation of the (aggregated) TSSD scores is
only valid for regions of the scene being visible in
all cameras.

Instead of scoring only a reference camera against
all other cameras as done in [15] we are scoring
all

(

2
n

)

pixel pairs within n images. For exam-
ple four images are scored by all 6 pixel-pairs in-
stead of only three. Please note that the number
of texture lookups remains the same. Only slightly
more arithmetic instructions are required by our
approach.

Instead of just summing these scores we follow
a statistical selection scheme to pick only the best
scores and sort out outliers immediately. We follow
two real-time-capable approaches:

• best n of m scores sorting out worst m − n

scores considered as mismatches due to occlu-
sions or specular surfaces,

• best selection of left and right half sequence for
a central camera. If the cameras are approx.
on a line left and right scores are handled sepa-
rately. Half sequence scores are compared and
the best one is chosen assuming occlusions oc-
cur only in one of the half-sequences.

4.5 Handling partial overlap

Partial overlap of different field of view has to
be handled explicitly for general camera configura-

vis=1

camera0 camera1 camera2

vis=1 vis=1

vis=2

full overlap
vis=3

vis=2

ray h

Figure 3: Field of view of three cameras overlaps
only partially. Normalization depending on vis is
used to normalizes matching scores for comparison
on a ray of depth hypotheses h.

tions because a ray of depth hypotheses may inter-
sect different field of views (see figure 3). We are
optionally normalizing the summed multi-camera
scores with the number of pairs where a scene point
is visible for each depth hypothesis. This is impor-
tant because a ray of depth hypotheses may inter-
sect different field of views resulting in inadequate
matching scores which have to be normalized to be
comparable among the whole ray. Test for visibility
can be executed very efficiently in hardware by ex-
ploiting clamping with a special marker value. In-
stead of checking whether texture coordinates (x, y)
are within valid range (e.g. [0..1]) we use a special
border color (0, 0, 0) to identify whether a texture
lookup was clamped. For each hypothesis (x, y, d)
we pre-compute the number of cameras vis where
the associated relative 3D point is within field of
view and store it as lookup texture. Summation of
visible pairs is normalized by vis very efficiently.

We follow an additional second approach of sim-
plifying this approach further for maximum perfor-
mance exploiting our dissimilarity measure TSSD.
Images are initialized such that texture access out-
side an image returns a different but constant value
for each camera. The set of n border values for
n cameras is chosen so that all SD pairs between
border values are bigger than the truncation thresh-
old. This is possible for small truncation thresholds
and a limited number of cameras. Sum of all non-
clamped values is normalized by the visibility of
the hypothesis. Partial overlap is handled as per-
fect mismatch which is wrong because we have no
information of the dissimilarity. This is not correct
but very efficient and the errors introduced are lim-

6

ited by our best n of m selection scheme and the
truncation threshold.

4.6 Selection and Post-processing

The best depth hypothesis on a ray is selected in
hardware almost for free by manipulating a frag-
ments depth value. Matching score of each frag-
ment (x, y, d) is set as depth value and best hy-
pothesis selected in hardware by depth-compare.
All matches beyond a required maximum dissimi-
larity threshold are invalidated for free by setting
an appropriate z-range.

Following this approach the resulting depth maps
are good enough for pre-visualization. Remaining
salt and pepper noise can be removed by local me-
dian filtering at the cost of performance if desired.

4.7 Post processing and Consistency

Testing

The resulting depth map is significantly perturbed
by error noise for small support regions. We use
statistical and heuristic post-processing to increase
depth map quality preserving depth discontinuities.
The errors can be categorized into

• statistical errors due to image noise,

• matching ambiguities, in particular for
texture-less regions and repeated textures,

• systematical errors due to our approximations
and wrong hypotheses.

Noise can be removed for more satisfactory visual-
ization easily by spatially filtering the depth map
at the cost of small details. In particular salt and
pepper noise of one-pixel obstacles can be removed
completely by local median filtering.

Handling matching ambiguities in a general fash-
ion is hardly possible for our local approach. We
try to solve it by using different baselines and ori-
entation between the cameras to make ambiguities
due to repeated textures occurring simultaneously
in many camera pairs very unlikely.

In addition consistency testing can be used to
invalidate uncertain depth values. For every depth
value associated to a ray of depth hypotheses we
count the number of cameras in which the voxel is
occluded. We follow a shadow-mapping approach

Figure 4: Top: Two of four input images of the
’castle’ sequence. Bottom left: Depth map esti-
mated in real-time with ’best 5 of 6 TSSD’ algo-
rithm and winner-take-all selection. Bottom right
figure illustrates the remaining dissimilarity. Dark
values=high dissimilarity, light values=low dissim-
ilarity.

to threshold the visibility of the depth hypothe-
sis to at least two cameras. Both, the occluded
and the occluding pixel can be invalidated as in-
consistent. We follow a shadow-mapping approach
to invalidate uncertain estimations very efficiently
in hardware.

5 Results

Our prototype system for real-time capture and
pre-visualization was implemented for four digital
fire-wire cameras mounted on a pole. We used a
mid-range Nvidia Geforce FX 5600 Graphics pro-
cessor which has only four parallel texture units. It
is embedded in a standard PC with a Pentium 4
main processor, an AGP 8x bus and 1GB of RAM.
Please note that the performance scales linearly
with the parallelism of higher performance graph-
ics cards with eight or more texture units which
are available, now. Please note that rectified im-
ages are not necessary. Radial lens distortion can
be compensated by dependant texture lookup but
wasn’t used in the following experiments.

Performance evaluation on a synthetic test scene
is evaluated in next section. Results for a natural

7

scene of highly complex geometry is demonstrated
in section 5.2.

5.1 Synthetic test sequence

We used a synthetic test sequence of four images
for performance evaluation. The scene consists of a
foreground portal occluding a background building
and low-textured grass floor. Dense depth is esti-
mated from four images in arbitrary configuration.
See figure 4 for two of four input images and qual-
itative raw estimation result computed with ’best
5 of 6’ camera selection, TSSD matching cost on
a 1 × 1 support and shiftable windows. Neither
spatial aggregation nor post-processing is used.

image size read-back time rendering time

320 × 240 2 ms 60 ms
640 × 480 7 ms 210 ms
704 × 576 9 ms 280 ms

1280 × 960 28 ms 760 ms

Table 1: Rendering time and overhead scale lin-
early with image size for (20 depth hypotheses).
Read-back includes overhead to transfer images
from main memory to graphics card and result back
to main memory.

scoring algorithm render time

classic SSSD for 3 pairs 39 ms
best 2 of 3 TSSD 44 ms

SSD for 6 pairs 78 ms
best 5 of 6 TSSD 94 ms

Table 2: Performance comparison of SSSD and best
n of m TSSD scoring algorithms comparing for 3
and 6 SD pairs for four 320 × 240 img.

A quantitative performance evaluation of rendering
time depending on search space and image dimen-
sions for four cameras is given in table 1. Rendering
time (or frame rate) scales linearly with image res-
olution and search space, as expected (figure 5).

5.2 Dinosaur scene

We evaluated our system with a natural scene suit-
able for image based rendering [8]. The scene con-

Figure 5: Multi-stereo rendering time (ms) vs.
depth search space dimension for four 320 × 240
input images using best 2 of 3 TSSD approach.

Figure 6: Left: portable multi camera image cap-
ture system, Right: Overview of the dinosaur scene
being reconstructed.

sists of a foreground dinosaur skeleton and back-
ground arches. It is captured with a four-camera
rig (see figure 6). Please note the high complex-
ity of the scene with lots of occlusions, non-diffuse
and texture-less surfaces. We used a search space
of 20 depth hypotheses evaluated by our ’best half-
sequence’ approach on a 1 × 1 support with TSSD
scoring and winner-take-all selection. Processing
time of the four 704 × 576 images is 280 ms.

Figure 7 (bottom left) illustrates the real-time
computed depth estimation. Most of the present
salt and pepper noise can be removed by post-
processing, if desired.

The selected best half-sequence of our best n of
m approach is illustrated in figure 7, bottom right.
Pixels with significantly better score (min. 10 %
better) in one of its half sequences are marked.

8

Figure 7: Top: two of four input images. Bot-
tom Left: estimated depth. Brighter values indi-
cate nearer scene points. Bottom Right: Best half
sequence selection. red indicates best left, green
best right score. white means no significant differ-
ence.

Red and green pixel mean left or right half se-
quence is significantly better than any other half
sequence. This is a measure for high depth dis-
continuity probability. Pixels with half sequence
discrepancy smaller 10 % are marked white.

6 Conclusions

We presented an algorithm for dense depth estima-
tion from multiple images. Our implementation is
running almost entirely on standard graphics hard-
ware. Depth is estimated in real-time with up to
20 fps from four images.

Live depth estimation can be used to adapt the
camera path during image acquisition to ensure all
desired scene details are captured with sufficient
precision. 3D scene capture is simplified and unsuc-
cessful image acquisition avoided. Capture quality
and cost is improved.

Our implementation uses the higher level shader
language Cg [10]. First experiments showed further
performance potential by hand optimized shader

code.
A quantitative comparison of hand-optimized

GPU and CPU implementations is desirable. More
performance could be reached by parallel usage of
CPU and GPU.

Our current systems uses a calibrated four cam-
era rig. Further work will focus on integrating real-
time camera path estimation to be able to change
relative camera calibration during capture. Then
our system could be easily extended to build a com-
plete global scene model on the fly.

Acknowledgments

This work is being funded by the European project
IST-2000-28436 ORIGAMI of the European Com-
munity. Images of the dinosaur scene were supplied
by Oliver Grau, BBC Research.

9

References

[1] Ati technologies inc. www.ati.com.

[2] Robert T. Collins. A space-sweep approach to
true multi-image matching. In Proc. Computer
Vision and Pattern Recognition Conf., pages
358–363, 1996.

[3] L. Falkenhagen. Depth estimation from stereo-
scopic image pairs assuming piecewise contin-
uous surfaces. In Proc. of European Workshop
on combined Real and Synthetic Image Pro-
cessing for Broadcast and Video Production,
Hamburg, 1994.

[4] Heiko Hirschmueller. Improvements in real-
time correlation-based stereo vision. In Proc.
of IEEE Workshop on Stereo and Multi-
Baseline Vision, Kauai, Hawaii, 2001.

[5] S. L. Hingorani I. J. Cox and S. B. Rao.
A maximum likelihood stereo algorithm. In
Computer Vision and Image Understanding,
volume 63 (3), pages 542–567, 1996.

[6] Intel corp. www.intel.com, 2003.

[7] S.B. Kang, R. Szeliski, and J. Chai. Handling
occlusions in dense multiview stereo. In Proc.
of IEEE Conference on Computer Vision and
Pattern Recognition, Dec. 2001.

[8] R. Koch, J.M. Frahm, J.F. Evers-Senne, and
J. Woetzel. Plenoptic modeling of 3d scenes
with a sensor-augmented multi-camera rig. In
Proc. of Tyrrhenian International Workshop
on Digital Communication (IWDC), Sept.
2002.

[9] Vladimir Kolmogorov and Ramin Zabih.
Multi-camera scene reconstruction via graph
cuts. In Proc. of ECCV, pages 82–96, 2002.

[10] Nvidia corp. www.nvidia.com.

[11] Nabil Boukala P. Colantoni and Jerome Da
Rugna. Fast and accurate color image pro-
cessing using 3d graphics cards. In Proc. of 8th
International Fall Workshop: Vision Modeling
and Visualization, Munich, Germany, Nov.
2003.

[12] Point grey research inc. www.ptgrey.com.

[13] D. Scharstein, R. Szeliski, and R. Zabih. A
taxonomy and evaluation of dense two-frame
stereo correspondence algorithms. In Proc. of
IEEE Workshop on Stereo and Multi-Baseline
Vision, Kauai, HI, 2001.

[14] Ruigang Yang and Marc Pollefeys. Multi-
resolution real-time stereo on commodity
graphics hardware. In Proc. of Conference
on Computer Vision and Pattern Recognition
(CVPR ’03), Madison, Wisconsin, June 2003.

[15] Ruigang Yang, Greg Welch, and Gary Bishop.
Real-time consensus-based scene reconstruc-
tion using commodity graphics hardware. In
Proc. of Pacific Graphics, Tsinghua Univer-
sity, Beijing, China, October 2002.

[16] Christopher Zach, Andreas Klaus, Markus
Hadwiger, and Konrad Karner. Accurate
dense stereo reconstruction using graphics
hardware. Technical Report TR 2003 018,
VRVis, Vienna, Austria, June 2003.

[17] Christopher Zach, Andreas Klaus, Bernhard
Reitinger, and Konrad Karner. Optimized
stereo reconstruction using 3d graphics hard-
ware. Technical Report TR 2003 024, VRVis,
Vienna, Austria, August 2003.

10

