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Abstract
In this paperwepresenta novel approach for interactiverenderingof virtual views fromreal image sequences.
Combiningtheconceptsof light �elds, depth-compensatedimage warpingandview dependenttexture mapping,
thisplenopticmodelingapproach canhandlelargeandcomplex scenes.Aportable, handheldmulti-camera system
has beendevelopedthat allows to record multiple image streamsby simply walking around the scene. These
image streamsare automaticallycalibratedanddepthmapsfor all viewsare generatedasinput to therendering
stage. For renderinga view dependentwarping surfaceis constructedon the �y and depth-compensatedimage
interpolationis appliedwith view-dependenttexture mapping. Renderingquality is scalableto allow fastpreview
andto achievehigh-endquality with thesameapproach. Thesystemcanhandlelarge andgeometricallycomplex
sceneswith hundredsof real imagesat interactiverates.

CategoriesandSubjectDescriptors(accordingto ACM CCS): I.3.3 [ComputerGraphics]:Viewing algorithms,I.4.1
[ImageProcessingandComputerVision]: DigitizationandImageCapture,I.4.8[ImageProcessingandComputer
Vision]: SceneAnalysis

1. Intr oduction

Oneof the major goalsin computergraphicsis to display
virtual worlds similar to real ones.For complex scenes,
however, it is often not feasible to createthem by hand
with 3D constructiontools. Even worse,thosemodelsare
most often recognizedas synthetic after just a few sec-
ondsdue to the lack of realistic surface appearance.One
well known approachto visualizecomplex scenesis Image-
Based-Renderingor IBR. The idea behindit is to capture
theappearanceof a realscenewith imagesandusethis ma-
terial to generateanddisplaynew virtual viewsof thescene.
ModernCCD camerasallow fastandef�cient capturingof
thevisualcomponentsof ascene(color, light), while thege-
ometricalcomponentsaremoredif�cult to obtain.Thesame
is true for image-basedrendering.In most casesit is ob-
vious how to displaythe images,but geometricalinforma-
tion is neededfor a correctsynthesisof novel views. View-
dependentlocalgeometryinformationin form of depthmaps
canbecomputedfrom imagesequencesby eitherrangedata
scannersor stereoscopicimageanalysisalgorithms.How-
ever, due to incorrectcameracalibration,dif�cult lighting
conditionsandnon-staticscenesit is often not possibleto

generateoneglobally consistent3D model from hundreds
of imagesanddepthmapsautomatically.

In this work we will presenta renderingsystemwhich
generatesview-dependentlocal geometryon the �y from
multiple depthmaps.For eachnew view the depthmaps
of the surroundingreal views are fusedin a scalablefash-
ion to obtaina locally consistent3D model.This geometri-
cal representationis basedon trianglesandcanthenbetex-
turedwith theimagescorrespondingto thedepthmapsusing
hardware-acceleratedtechniques.

The �rst stepin image-basedrenderingis theacquisition
of imagesof therealscenefrom many differentview points.
Herewewantto beableto scanthesceneby simplywalking
aroundtheareaof interestandto automaticallycalibratethe
camerasfrom the imagedataalone.To meettheserequire-
mentswe have developeda �e xible and mobile capturing
systemfor ef�cient multiview recordingin indoor andout-
door environments,usingstandardlaptopsandfour battery
poweredsynchronisedcamerasmountedon a rig. Thesyn-
chronisationin conjunctionwith the rigid coupling of the
camerassupportsthecalibrationevenfor non-rigidandgeo-
metricallyverycomplex sceneswith occlusions.In anof�ine
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modelingstepa setof densedepthmapsis thencomputed
from multi-viewpoint stereoanalysis.Thesedepthmapsare
thenusedasinput to theproposedonline renderingsystem
for novel view synthesis.

In the next sectionan overview of relatedwork will be
given to help classifyingthis paper. In section3 the multi-
camerasystemandthe necessarypreprocessingof the im-
ageswill bepresented.Then,in section4 theonlinerender-
ing systembasedon imagesanddepthmapsis introduced.
And �nally in section5 someresultsand conclusionsare
given.

2. Previous Work and Moti vation

Image-basedrenderingis closelyconnectedto the plenop-
tic function introducedby McMillan andBishopin 12. This
function de�nes all radianceemitted from one point into
every direction; for a dynamicscenethe dimensionof the
plenopticfunction is 7. Levoy andHanrahanproposedin 9

an IBR systemcalled Light Field which interpolatednew
views using a 4D representationof the plenoptic function
(for a staticsurface).To approximatetheplenopticfunction
a very densemeshof imagesfrom cameraslying in a regu-
lar sampledviewpointplaneis used.Lessdensesamplingof
theviewing spaceresultsin visualartifactswheninterpolat-
ing betweenviews.TheLumigraphintroducedby Gortleret
al in 4 usesaconvex 3D shapeapproximationfor depthcom-
pensatedinterpolation.They alsosuggestedanapproachto
allow theusageof ahand-heldcameraandused“rebinning”
to maptheoriginal images.However, this intermediatestep
of interpolationreducesthequality of theimages.

View-dependenttexture mapping(VDTM) is an alterna-
tivewayof renderingvisualeffectsfrom differentviews.In 2

Debevecet al. describea real-timeVDTM algorithmwhich
useshardware-acceleratedprojective texture mapping.For
VDTM a consistent3D model is required,which is not al-
ways easyto obtain. In 1999 Heigl et al. presentedin 5 a
plenopticmodelingapproachbasedon the imagesfrom a
hand-heldcamera.They useddepthmapsasa local repre-
sentationof the scenegeometryandcorrectedthe interpo-
lation of eachray by usingthis information.Looking up the
colorfor eachrayin thethreesurroundingcamerasis similar
to VDTM with threblendedtextures.Buehleretal. in 1 pro-
posedtheirunstructuredlumigraphrenderingwhich is ahy-
brid designbetweenVDTM andlight �eld rendering.Unlike
VDTM, they donot rely onahigh-qualitygeometricmodel,
but they needageometricalapproximationof thescene.Also
Pulli etal. in 15 describedview-basedrenderingasa“method
betweenpurelymodel-basedandpurely image-basedmeth-
ods”.Eachrealview consistsof acoloredrangeimage,then
severalpartialmodelsarebuilt andblendedtogether.

All mentionedrenderingtechniquesshareoneissue:They
needapproximategeometryinformation.To create3D mod-
els from rangeimagesPulli proposeda volume basedap-
proachin 14, but for morecomplex scenesthiscouldbevery

hardor evenimpossible.Pointbasedrenderingsystemslike
describedin 17 are also useful to renderfrom depthmaps
andimages.But dueto holesin the depthmapsit is often
necessaryto �ll holesin the local geometry. This problem
is bettersolvedby usinginterpolatingsurfacesasrendering
primitivesinsteadof points.

Theotheropenissuecommonto mostIBR systemsis the
acquisitionof images.In thebeginning,staticgridswith lots
of fully calibratedcameraswereused.Alternatively, motion
controlsystemsscantheviewing spacewith onesinglecam-
era. This resultsin very densesamplingwhich is a good
start for rendering,but which alsoresultsin large amounts
of data.Levoy and Hanrahan�rst suggesteda methodfor
light �eld compression,sincethenthisproblemhasbeenthe
focusof many publications10� 16. Gortleretal. 4 startedusing
weaklycalibratedhand-heldcamerasandusedknown mark-
ersfor poseestimation.At lastyearsSIGGRAPHMatusiket
al. presenteda systemfor “Image-Based3D Photography”
in 11. They useseveral calibratedcameras,a turntableand
rotatinglight sourcesaswell asknown backgroundimages
displayedon a large plasmascreen.With this systemthey
areable to capturethe appearanceof very detailedobjects
includingspecularre�ectionsandfuzzymaterial.

All thesemethodsdonotscalewell with thesizeandcom-
plexity of thesceneandthey areoftenspecializedto sample
singleobjectsin controlledenvironments.Koch andPolle-
feys asin ,8 and13 usedimagesequencesfrom uncalibrated
hand-heldcamerasandStructure FromMotion (SFM) algo-
rithms.This approachscaleswell despitethefactthatscan-
ninga largeviewing volumewith onesinglecamerais time-
consumingeven whenusingvideo framerate.In addition,
specularre�ections, changinglighting condition (clouds),
unsteadymovementof thecameraanddynamicscenesmay
causetheSFMalgorithmsto fail.

Therenderingmethodproposedin thispaperis similar to
the meshcreationfrom Heigl et al. 5, but the construction
of the underlyingmodel is different.The resultingmeshis
texturedin realtimeusingVDTM similar to Debevec's ap-
proach,but becausethe geometryinformationof eachsur-
faceareamayresultfrom up to threecameras,thetextureis
alsochosenfrom thesecameras.

3. ImageAcquisition and Of�ine GeometricModeling

In thissectionwedescribetheimageacquisitionandprepro-
cessingmodules.Thesemodulesoperateof�ine andmustbe
performedoncefor eachacquiredsceneonly. Thestepsare:

� Imagecapture,
� Cameracalibration,
� multi-view depthestimation,
� preparationof depthsamplesfor realtimegeometricmod-

eling.
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3.1. Multi-Camera imagecapture

For fastandef�cient sceneacquisitionwe introduceahand-
held multi-camerasystemwhich is scalablefor different
scenes.In outdoorenvironmentmobility is given by using
standardlaptopcomputers.Their limited performanceresult
in a reducedframerate.On theotherhandin a studioenvi-
ronmentthecapturingsystembene�ts from thehigh perfor-
manceof modernPCsystemswith higherframerates.

Figure 1: Multi-camera rig with synchronizedimage cap-
ture

A prototypesystemconsistingof four digital �re wire
(IEEE 1394)camerasandtwo laptopsin a rack,which can
be carriedby the operator, hasbeenbuilt. The camerasare
mountedon a pole with adjustablepositionandorientation
of eachcamera,so any desiredcon�guration of the cam-
eraposeson thepolecanbeused.Thesensorcaneasilybe
movedby handwithout a tripod, in particularallowing hor-
izontal, vertical androtationalmotion to scanthe sceneby
simply walking by. The camerasare time-synchronizedso
that non-staticscenescanbe sampledby obtaining"times-
liced", synchronizedshotsof multiple camerasin which all
movementsin thescenearefrozenfor the timeslice.These
frozenmultiple views of thescenehelpobtaining3D infor-
mationandperformplenopticrenderingof non-cooperative
scenesbecauselimited motionin thescenecanbetolerated.
Differentscenesmay requirea differentviewing space.By
adjustingthecamerasonthepoleor byusingapoleof differ-
ent lengththeviewing spacecanbeadaptedto �t thescene.
Evenmorecamerascanbeaddedto enhancethequality of
the samplemesh.Hence,a 2D scanningof the viewpoint
surfaceis obtainedwith a singlewalk-by.

To handledatafrom four cameraswith a mobilesystem,
we decidedto usetwo laptopseachconnectedto two cam-
eras.Thelaptopsaresynchronizedvia standardethernetwith
a scalablenetwork protocol 3 which serves two purposes:
The distribution of parameters(e.g. exposuretime) to all
cameras,andcapturesynchronizationin time.Usingdouble-
bufferingandthreethreadspernode,theresultingframerate
for color imagesof thesize1024x768with four camerasand
two computersis four fps. This is suf�cient for denseview

spacesamplingby aslowly walkingoperator. In acontrolled
studioenvironment,thesynchronizationprotocolallows an
arbitraryamountof computersto beconnectedandthecam-
erascanoperateat full framerate.

3.2. Camera tracking and calibration

Theimagesareacquiredwith ahand-heldmulti-camerasys-
tem with arbitrarycameramotion.Sincewe want to avoid
putting markers into the scene,we have no control over
the scenecontent.Therefore,all cameraviews are uncal-
ibrated and the calibrationand the cameratrack must be
estimatedfrom the imagesequenceitself. Furthermore,the
sceneis most likely uncooperative, meaningthat complex
geometry, massive occlusionandmoving objectsmay hin-
der thecalibration.Theonly controlwe have is thespeci�c
con�guration of our camerasetupand,to a limited extend,
someknowledgeabouttheperformedcameramotion.Since
all camerasoperatesynchronouslywe know that ,for one
instant,all camerasview a “time-frozen” static scene.We
alsoknow that from onerecordingtimestepto thenext, the
relative con�guration betweenthe camerasdid not change,
hencewecanpredictpossibleobjectpositionsin theimages
of the next timestep.Thusthe relative orientation(the fun-
damentalgeometrybetweentheimages)is usedto stabilize
tracking.

For trackingandcalibrationwe have extendedtheSFM-
approachof Pollefeys andKoch 13� 8 to a multi-cameracon-
�guration. Somedetailscanalsobe found in 6. In this ap-
proachtheintrinsicandextrinsiccameraparametersfor each
imageare estimated.The standarddecriptionof a projec-
tive cameraconsistsof two 3x3 matricesK andR andthe
3-dimensionalvectorC. K containstheintrinsic camerapa-
rametersfocal length,aspectratio andimagecenter, R de-
scribestherotationof thecamerain spaceandC is thetrans-
lation vectorof thecameracenter. Theprojectionmatrix M
projectsthe homogeneous3D point P into a 2D imageat
imagepoint p with zp � MP, z is theprojective depth.M is
de�ned asthefollowing projective 3x4-matrix:

M � K � RT ��� RTC�

TheSFM approachautomaticallytrackssalient3D features
(intensity corners)throughoutthe images.The calibration
resultsin a projection matrix for eachcameraof the se-
quenceanda sparsepoint cloud of the tracked 3D feature
points.Theapproachhasbeentestedextensively with awide
varietyof cameracon�gurationsandscenesandhasproven
to be very successful.The cameratrackingandcalibration
may suffer from a projective skew andfrom error accumu-
lation in thecaseof very long imagesequences.Recording
large scenesmeansthat most imagesdo not sharea com-
monregionof thescene.Thisafffectsthequalityof tracking
andmatchingof features.Thereforewe cannotguaranteea
globallyconsistentscenemodel.Theseproblemsaregreatly
reducedwith the multi-camerarig sincewe canexploit the
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rigidity constraintsof the cameracon�guration. The prob-
lem is even lessimportantin the caseof image-basedren-
dering.It is suf�cient to renderfrom local geometrythat is
supportedfrom a local neighborhoodonly, becauseduring
renderingonly partsof thescenearevisible at once.Depth
mapsare appropriatelocal scenedescriptionsthat may be
usedfor this purpose.

3.3. Multi-viewpoint depth estimation

With the calibratedimagesequenceat hand,one can ob-
tain densedepthmapsfrom multi-viewpoint disparityesti-
mation.Fromthecalibrationtheepipolargeometrybetween
pairsof imagesis known andcanbeusedto restrictthecor-
respondencesearchto a linearsearch.Weextendthemethod
of Koch et al. 7 for multi-viewpoint depthestimationto the
multi-cameracon�guration. This methodis ideally suited
sincewecanexploit the2D grid of linkeddepthmapsfor all
camerasof therig. This resultsin very densedepthmapsof
thelocal scenegeometry. Only in very homogeneousimage
regions it might not be possibleto extract suf�cient scene
depth.Theseregionswill be interpolatedfrom neighboring
depthvalues.Usingmorethanonepairof camerasallowsus
to �ll holesfrom occlusionsandto enhancetheprecisionof
thedepthmaps.

To give anideaaboutthequalityof theestimatedcalibra-
tion andthedepthmaps,acomplex realscenewasevaluated.
240imagesweretakenwith afour-camerarig attheNational
History Museum,London,featuringa largedinosaurskele-
ton in themainentrancehall. Therig wasmovedalongside
thedinosaurlookingattheskeletonandthebackhall region.
Onemayjudgethehighqualityof thecameracalibrationand
thedensityof thedepthmapevenwith this highly complex
scene.In �gure 2, left, weseeanoverview pictureof themu-
seumhall with theskeleton.To theright, thetrackedcamera
positions(pyramids)andthe3D featurecloudwith tracked
pointsof thedinosaurandthehall backareaaredisplayed.
Thedinosaurshapeshows thatevenagloballyconsistentre-
constructionof thescenewaspossible.

Figure3 shows oneof theoriginalcameraimagesandthe
correspondingdepthmap.Thedensityandresolutionof the
depthmapis very detailed.Thecamerais rathernearto the
skeletonand the depthof the sceneis very large, causing
displacementsof up to 80 pixels betweenadjacentimages.
Therefore,imageinterpolationalonewill not suf�ce to ren-
dernovel viewsof thesceneanddepthcompensationis nec-
essary. Thescenecontainsa lot of occludedregions(around
the ribs) andonecanseethat in someof thoseregionsno
depthcouldbeestimated.Theseregionsarecoloredblack.

3.4. Sampling the Depth maps

The depth maps serve as geometry input for the view-
dependentonlinemodelingthatwill bedescribedin thenext
section.Using the depthmapsdirectly with full resolution
is not feasibledue to the vast amountof data.We do not

Figure 2: 4-camera acquisitionand calibration of the di-
nosaurscene. Left: Overview of the sceneto be captured.
Right: SFM-calibration with camera positions(pyramids)
and 3D feature points of dinosaur and hall background
(snapshotfrom3D scenemodel).

Figure 3: Left: One of the acquired original camera im-
ages. Right: correspondingdepth map of camera view
(near=dark,far=light, unde�ned=black).

needsuchhigh resolutiongeometryfor view interpolation.
Therefore,eachdepthmapis subsampledin a regular grid
with a spacingthat is parametrizedsuchthat it can easily
beadaptedto the speci�c needs.This grid is locatedin the
imageplaneof therealcamera.At eachgrid pointa 2D me-
dian �lter is appliedto reducetheeffectsof outliersandto
�nd the mostprobabledepth.The �ltered depthvaluecor-
respondsto thedistancebetweenthepoint in thesceneand
the cameracenter. In otherwords,it is the lengthof a ray
originatingfrom thecameracenterthroughthegrid point in
the imageto thepoint in thescenewhich causedthe image
point.Takingthe j-th 2D point p j

i in theimageplaneof cam-

erai andthecorrespondingdistancezj
i from thedepthmap,

theeuclidean3D scenepointP j
i canbecalculatedas:

P j
i � zj

i 	�


KiR
T
i ��

1
	

p j
i �

Ci

The3D point P j
i of the2D point p j from camerai is called

samplej of camerai. For eachgrid point in eachcameraone
sampleis created.In untexturedregionsof theimageit is of-
ten impossibleto determinethedepth.This resultsin holes
in the depthmap,samplesin theseregions are discarded.
Lateronin therenderingstagethegeometryin theseregions
is constructedfrom thesamplesfrom othercamerasif pos-
sible.Thevalid samplesserve asgeometricapproximations
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thatareusedto de�ne theview-dependentinterpolationsur-
face.

For a bettertrade-off betweenperformanceand quality,
a Level-of-Detail (LOD) is introducedat this point. When
creatingthesamples,thedesirednumberof levelsLmax can
bechosen.After their generationall samplesbelongto level
zeroL0 by default.To generatelevel Lk � 1 eachsecondsam-
ple in both directionfrom level Lk is moved to level Lk � 1.
Thusthenumberof samplesin level Lk � 1 is 1� 4 of thepre-
vious numberof samplesin level Lk which is now reduced
by 1� 4. Filtering thesamplesbeforesubsamplingis not re-
quired,dueto themedian�lter whichwasappliedwhengen-
eratingthesamples.

While renderingwith a speci�c LOD n, the samplesof
several levels areusedin combination.Renderingwith the
coarsestlevel only thesamplesof Lmaxareused.For thenext
level Lmax



1 the samplesof Lmax andof Lmax


1 areused.
In general,if level Ln is requested,all levels Lx with x � n
areused.

4. Image-basedinteractive rendering

The calibratedviews andthe preprocesseddepthmapsare
usedas input to the image-basedinteractive renderingen-
gine. The usercontrolsa virtual camerawhich views the
scenefrom novel viewpoints.Thenovel view is interpolated
from the setof real calibratedcameraimagesandtheir as-
sociateddepthmaps.During renderingit must be decided
whichcameraimagesarebestsuitedto interpolatethenovel
view, how to compensatefor depthchangesandhow toblend
thetexturefrom thedifferentimages.For largeandcomplex
sceneshundredsor eventhousandsof imageshaveto bepro-
cessed.All theseoperationsmustbeperformedat interactive
frameratesof 10fpsor more.Weaddresstheseissuesin the
following sections:

� Selectionof bestrealcameraviews,
� fusionof multiview geometryfrom theviews,
� viewpoint-adaptive meshgeneration,
� viewpoint-adaptive textureblending.

4.1. Camera ranking and selection

For eachnovel view to render, it hasto bedecidedwhichreal
camerasto use.Several criteriasare relevant for this deci-
sion.Wehave developeda rankingcriterionfor orderingthe
realcameras.In thefollowing, N realcamerasCi , 0 � i � N
arecomparedto thevirtual cameraCv.

Distance: The �rst criterion concernscameraproximity.
Takingtheviewing directionAv andthecenterCv of thevir-
tual camera,theorthogonaldistancedi of eachreal camera
centerCi to this raycanbedetermined:

di �

���




Ci
� Cv

���

Av
��� Av

���

���

For betterevaluationall distancesdi arenormalizedwith the
maximumdistancedmax of all cameras.dmax is the maxi-
mumof all di for thecurrentCv:

dmax � max� di
� 0 � i � N �

Viewing angle: Thesecondcriterion is the anglebetween
Av andtheviewing directionAi of camerai. Cameraslook-
ing into directionsdifferent to the virtual cameraare pe-
nalisedbecausethey are lessuseful for view interpolation.
Theangularpenaltyai for camerai is de�ned as:

ai �

arccos



Ai �

Av
�

amax

For normalization a maximum threshold angle amax
=a�eld-of-view is given. Cameraswhich are more than their
�eld-of-view “off axis” do not sharea commonviewing
rangeand can not be usedfor propergeometryor texture
interpolation,thesearemarkedinvalid.

Cv

d2
d1

C1

C2

a 2

a1

1

2Samples C
Samples C

Figure 4: Criteria evaluation. The ranking criteria are
shownfor two real camerasC1 andC2. Cv sees3 samples
fromC1 and4 samplesfromC2.

Visibility: Thethird criterionis amorecomplex one,wecall
it the visibility. It evaluatesthe scenevolume that a given
real camerahasas seenin the context of the virtual cam-
era.For this purposevery few (nmax � 20) regularsamples
of the depthmapsasdescribedabove arechosensuchthat
thewhole imageof the real camerais covered.Thesesam-
plesarethenprojectedinto thevirtual cameraandchecked
for visibility. The numberof visible samplesni divided by
thenumberof possiblesamplesnmax givesa roughapproxi-
mationof theregion coveredby a realcamera.Camerasfor
which this ratio resultsto zeroaremarked invalid. To con-
vert thisvalueinto avisibility penaltyvi it is subtractedfrom
one:

vi � 1 �

ni

nmax

Figure4 sketchesthedifferentselectioncriteria.Two real
camerasC1 andC2 areevaluatedw.r.t. thevirtual cameraCv.
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Distanceandviewing anglearegivenin the�gure. For visi-
bility, thedepthsamplesfrom camera1 (circles)andcamera
2 (crosses)areprojectedinto the virtual cameraandevalu-
ated.

All three criteria are weightedand combinedinto one
scalarvalue qi which representsthe inversequality of the
realcamerai to generatethenew view:

qi � wddi
�

waai
�

wvvi �

After calculatingqi for eachcamera,thelist of valid cam-
erasis sortedin ascendingorder. Theinterpolationmode�-
nally decideshow many of the bestsuitedcamerasarese-
lectedfor view interpolation.

4.2. Multi view depth fusion and meshcreation

Therankedcamerasarenow usedto interpolatenovel views.
Sincethenovel view maycover a �eld of view thatis larger
thanany realcameraview, wehaveto fuseviewsfrom differ-
entcamerasinto onelocally consistentimage.To ef�ciently
warp imagesfrom differentreal views into thenovel view-
point we generatea warpingsurfaceapproximatingthe ge-
ometryof thescene.Startingfrom a regular2D-grid that is
placedin theimageplaneof thevirtual camerathis warping
surfacewill beupdatedfor eachcameramotion.Thespacing
of this grid S �




sx
�

sy
�

with sx
�

sy in pixelscanbescaledto
thecomplexity of thescene.With eachpoint in thegrid, a5-
tuple g ��� Pg

�

pg
�

ig
�

bg
�

dg � calledgrid point is associated.
pg is the 2D position in the imageplane,Pg the 3D point
to be constructed,ig is the numberof the cameraresponsi-
ble for Pg, bg is a booleanmarkingthis grid point valid or
invalid anddg is thedistancefrom Pg to Cv. Thebg anddg

componentsof all grid pointsaresetto defaultvalues,which
arebg � invalid anddg ��� .

To fuse3D informationfrom the �rst n ranked cameras,
for eachcamerai thefollowing algorithmis used.

� Eachvalid sampleP j
i for camerai is projectedinto the

virtual camerawith p j
i � MvP

j
i and the distanced j

i �

��� P j
i

� Cv
��� is calculated.

� If p j
i is not in the visible area,the following stepsare

skippedandthenext sampleP j � 1
i is taken. If it is in the

visible area,the nearestgrid point gn is selected.Due to
theregularityof thegrid, this is easilydonewith

gn � rnd



pi

S �

� If the current sample p j
i has a smaller distanced j

i to
Cv thenthe selectedgrid pointsdepthdgn , then the grid
pointsdatais updatedfrom thissample,elsetheupdateis
skipped.Whenupdatinga grid point from a sample,Pgn

is setto P j
i , pgn is adjustedto p j

i , thecamerasnumberi is

storedin ign andthenew distancevalued j
i is assignedto

dgn.

Thealgorithmproceedswith thenext sampleP j � 1
i . Updat-

ing grid points only with sampleswhich are nearerto the
virtual camera(d j

i �

dgn) ensuresthat occlusionare han-
dled correctly. The samplesof the highestranked cameras
are projected�rst. This ensuresthat most part of the new
view is interpolatedfrom thebestcameras.Only in regions
thatareoccludedfor thebestcamera,a lowerrankedcamera
sampleis used.Figure5 depictsthis situation.

 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! 

 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! 

"!"!"!"!"!"!"!"!"!"!"!"!"!"!"!"

"!"!"!"!"!"!"!"!"!"!"!"!"!"!"!"

#!#!#!#

#!#!#!#

#!#!#!#

$!$!$

$!$!$

$!$!$

Cv

C1

C2

Camera 1
Camera 2

Regions seen from:

Figure 5: Geometryfusion from two cameras, with C1
ranked higher thanC2. Basedon the ranking, C1 will sup-
ply mostof theinformation.Only in partsthat are occluded
for C1, datafromC2 is �lled in.

After projectingsamplesandadjustinggrid points,most
grid pointsarevalid andcontain3D informationsuitableto
representthepartof thescenevisible in thevirtual camera.
But becausesomegrid pointscould be still invalid andthe
2D positionsin pgn are�tted to projectedsamples,thecon-
nectivity of the grid points cannotbe given from the grid
itself.Usingthe2D positionof theall valid grid points,a2D
Delauny triangulationof all grid pointsin theimageplaneof
thevirtual camerais performed.Transferringthis 2D mesh
to the3D pointsPgn givesusascalableapproximationof the
3D scenewith triangles.The approximationcan be scaled
with respectto the samplingdensityof depthsamplesand
thedensityof thegrid pointsfor triangulation.This surface
meshis recreatedaftereachcameramovementasviewpoint-
adaptive geometry.

4.3. Texturing

The texturing step effectively mapsthe real camerasinto
thevirtual view with thehelpof theviewpoint-adaptive sur-
facemesh.Several slightly differentmethodsfor texturing
are considered.The most simple one is to chosethe best
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ranked cameraas texture source.If this real camerais not
too farawayfrom thevirtual cameraandbothhaveasimilar
�eld of view, the resultsare good.This is the fastesttex-
turing methodsinceswitchingbetweendifferenttexturesin
one rendercycle is not necessaryandeachtrianglehasto
bedrawn only once.Problemsarisewhenpartsof themesh
arenot seenfrom the selectedcamera.Thesepartsremain
untextured.

To textureall trianglesproperlyit isnecessaryto selectthe
texture accordingto the cameraswherethe geometryorig-
inatedfrom. The triangle verticesare depthsamplepoints
wheretheoriginatingrealcamerais known. However, since
eachvertex is generatedindependently, a trianglemayhave
verticesfrom up to threecameras.Hereonemay decideto
eitherselectthebest-rankedcamera(single-texturemode)or
to blendall associatedcameratexturesonthetriangle(multi-
texturemode).Properblendingof all textureswill result in
smoothertransitionbetweenviewsbut with higherrendering
costsfor multi-passrendering.

To testtherenderingquality, asyntheticscenewasgener-
atedby composingaVRML modelof the“Arenberg Castle”
togetherwith a VRML modelof anentranceportal to simu-
lateocclusion,asshown in �gure 6 (right). This textured3D
modelwasthenrenderedfrom differentviews andscreen-
shotsalongwith synthesizeddepthmapsandcorresponding
projectionmatricesweresaved.Basedon this groundtruth
material,therenderingquality wasveri�ed. To measurethe
imagequality, oneview (shown in �gure 6, right) from the
sequencewastaken asreferenceimage.Thecorresponding
camerawas then removed and this view was interpolated
from theremainingimageswith differenttexturingmethods.
The mostcritical regionsare the edgesbetweenthe back-
groundwall andthe foregroundportal.Dueto thevariation
in depth,mostartifactsarelocatedhere.For bettercompari-
sonthis region is magni�ed (�gure 6, left) andthereference
imageis thencomparedto thedifferentinterpolatedviewsby
imagesubstraction.Theresultingdifferenceimageservesas
visualerrormeasureandadditionallythemeanabsolutein-
tensitydifference(MAD) is given.To emphazisethevisual
errorsa gammacorrectionof 0.3 wasappliedon thediffer-
enceimages.

For comparisononly, the mostsimpleapproximationof
thedesiredview is used.For this purposethenearestimage
is takenwithout depthwarping(nearestneighbour),in fact,
this is equivalent to standardimageinterpolation.Figure7
shows thattherearelargeareasaroundtheportalwherethis
interpolationfailsdueto thelargeimagedisplacements.

Thedifferenceimageshows that the objectsarenot ren-
deredat thecorrectdepthandtheMAD valueis 26.5.With
ourproposedrenderingsystemwecanapplydepthcompen-
sationwith differenttexturingmodes.

Figure 6: An input view of a syntheticscene(right) and a
magni�ed closeupof critical regions(left).

Figure7: Rendering(left) anddifferenceimage(right) when
a nearestneighborselectionwithout interpolation is used.
Thedifferenceimage showsthat large image displacements
occurespeciallyin theforegroundregions.MAD = 26.5

Figure 8: Rendering with single-camera, single-texture
mode:Thedepth-compensatedinterpolationremovestheim-
age displacements,but edge artefactsremain.MAD = 12.8

Figure 9: Rendering with multi-camera, single-texture
mode: The view-dependenttexturing removes someedge
artefactsat the right occludingborder of the portal. MAD
= 12.4

Figure 10: Rendering with multi-camera, three-texture
mode:Textureblendingreducessometextureedge artefacts,
althoughthe improvementis minor in this scene. MAD =
11.8
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Thedepthmapsweresubsampledwith 200x160samples,
the sizeof the grid wasalso200x160points.Figure8 was
renderedusingonly thehighest-rankedcamerafor texturing
(singlecamera,singletexturemode).It is visible thatthege-
ometricalapproximationremovesmostof themoreserious
errorsresultingin a MAD of 12.8. Due to the discretized
samplingandgeometricalconstruction,�ne structureslike
thewindows in thebackgroundarenotmodeledsuf�ciently
which resultsin the remainingerrors.This renderingmode
is very fastsinceall texturesaretakenfrom a singletexture
map.

Using more sophisticatedtexturing compensatessome
moreerrorssothatthe�nal visualquality is verycloseto the
original view. Figure9 is renderedfrom multiple cameras,
but eachtriangleusesonetextureonly (multi-camera,single
texture).Fromthreepossiblecameras,againthebestranked
can be taken to texture the triangle.Sometexture switch-
ing is requiredbut recentgraphicshardware is fastenough
for this. In regionswheremost trianglesare textured from
onecamerathe result is the sameasin the �rst method.In
regions textured from many different camerasthis can re-
sult in texture artefactsbecauseadjacentfragmentsdo not
always match.This methodgives a MAD of 12.4. Since
eachtrianglehasto bedrawn only once,theslowdown com-
paredto singlecameratexturing is small. Sharpedgesbe-

Figure11:Parkinglot scene. Top:Twooriginal images.Bot-
tom left: Depthmap,right: Novel viewpoint rendered from
theparkinglot scenein multi-camera, multi-texturemode.

tweentexturescanbeavoidedby multi-texturingandblend-
ing. Eachtriangleis drawn threetimesusingthetexturesas-
sociatedwith thethreecameras(multi-camera,multi-texture
mode).The previously mentionededgesbetweentextures
areblendedsmoothly, asshown in �gure 10 resultingin a
MAD fo 11.8.Onmoderngraphicshardwareit is alsopossi-
ble to usesingle-passmulti-texturing.Differenttextureunits

are loadedwith the threetexturesand then the triangle is
drawn only once.This gives a speed-upof approximatly
30%comparedto themulti-passtexturing.Theperformance
gain is not factor3 asonewould expect,becausefor each
trianglethe textureunitshave to bereloadedwhich is quite
expensive.

5. Performanceissues

We have implementedthe describedrenderingsystemin
C++ usingOpenGLandtestedit on a standardPC (Linux)
with 1.7GHzAMD Athlon,1GBmemoryandaGeforce4Ti
4400with 64 MB memory. Thefollowing sectiondiscusses
someof the performanceissuesthat arise.We will discuss
memoryandprocessingspeedrequirements.

5.1. Memory Handling

Expecting several hundredsof cameraimagesto render
from, somecarehasbeentaken to handlesuchamountsof
texturesanddepthmaps.After creatingthe depthsamples,
the depthmapsarereleasedimmediately. To avoid sample
creationfor eachstartof theprogram,thesamplesarestored
andreloadedif necessary. Even if moderngraphicsboards
have 128 MB of memory, this is far too little for our pur-
pose,but theAGPinterfaceallows theusageof mainmem-
ory for textureswithout signi�cant performanceloss.When
starting,theprogramreservesagivenamountof memoryfor
texturesandcanalsobetold to loadasmany imagesaspossi-
blein advance.Lateron,imagesareloadedondemandwhen
they areusedfor the �rst time. If theupperboundof mem-
ory for texturesis reached,theleastrecentlyusedtextureis
released.Texture compressionis usedto preserve memory,
too. The �x edcompressionratio is 1� 6, allowing to handle
6 timesmoretexturesthanwithout compression.The only
problemis that the compressiontakes sometime. In case
thetextureis loadedondemand,whichmeanstherendering
stopsuntil thetextureis ready, it takesaround5 timeslonger
compressingthe texture than loading it uncompressed.We
have thereforeprecompressedthe images,storedthem on
diskandareloadingthemasalreadycompressedtextureson
demand.

Using thesetechniques,we areableto handleimagese-
quencesof nearlyarbitrarysize.In an initialization run all
imagesare preparedas compressedtexturesand all depth
mapsare sampledin an LOD hierarchy. This resultsin a
space-and time-optimizedstorageof the plenopticmodel.
The syntheticcastlescenefor exampleconsistsof 216 im-
agesof thesize768x512andtherequiredspacefor theorig-
inal imagesand depthmapsis about566 MB. The com-
pressedrepresentationuses132MBfor depthsamplestorage
and109MBfor compressedtexturesonly. Testswith scenes
of 1057 images(3 GByte raw data)on a PC with 1GByte
memoryshowedthatall texturescouldbepreloaded.To han-
dle even larger sceneson-demand-loadingis also possible
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anddoesnot reducetheframeratesigni�cantly. Thebottle-
neckof loadingtexturesis removed.

Typically, theperformanceof arenderengineis measured
in thedisplayedframespersecondwhich aredependenton
thescenecomplexity andvisiblearea.Our renderingsystem
is differentin this respectsincetheframerateis roughlyin-
dependentof thescenecomplexity but dependson thenum-
ber andresolutionof the real views that areusedfor inter-
polation.Eachtime the viewpoint is changed,the warping
surfacemeshis reconstructedfrom thedepthsamplesof the
bestrankedn cameras.Thisoperationis linearin thenumber
of camerastimessamplesandperformedby theCPU.

The necessarystepsare cameraranking, projection of
thesamplesandDelauney triangulation,asdescribedabove.
Camerarankingisquitefast,theselectedrankingcriteriacan
becomputedwith little cost,even1000camerasareranked
in 3.9ms.TheDelauney triangulationis linearin time w.r.t.
thenumberof points.A meshfor 100x75grid pointsis cre-
atedin 25 ms, for 200x150grid points it took around101
ms.

5.2. Renderingperformance

Projectingsamplesfrom real camerasinto the virtual cam-
era is also quite expensive. A typical densityof 200x150
samplesresultsin 30000projectionspercamera,andusing
10realcamerasgives300,000matrix-vectormultiplications.
Thesearecalculatedin approximatly77ms.Addingthetime
for renderingwith 4 ms,a total of 182mspergeometryup-
datefor a grid with 200x150points and 10 cameraswith
200x150sampleseachis reached.

For thisreason,thelevel-of-detailandthescalabledensity
of grid pointsis usedto reducethecomplexity. Eachlevel-
of-detail andalsoeachsteppingin the grid densityreduces
thecomputationtime by factorfour. Also a properselection
of the relevant camerashelpsto reducethe numberof pro-
jectionsneeded.All threevaluescanbeadjustedby theuser
to tradebetweenquality andspeed.So usingonly 3 cam-
eraswith 100x75samplesanda grid with 100x75pointsit
took only 31 ms to generatea new view. The loss in qual-
ity dependson the complexity of the scenebut to enhance
the quality signi�cantly, a slowdown of factor 8 hasto be
toleratedfor mostscenes.

In general,for closeupviews of small partsof the scene
only a small numberof camerasis required,but the depth
granularityshouldbe �ne. On the otherhand,to obtainan
overview overa largescene,many realcamerasarerequired
simultaneouslybut thelevel-of-detailcanbechosenmoder-
atelybecauseof thereductionof scale.Finally, texturemap-
pingandblendingis performed.Thetexturemappingis fully
hardwareacceleratedandmostlydeterminedby thedisplay
resolutionandthetexturingengineof thegraphicscard.

With this scalableapproach,interactive frameratesof 5

to 10 fpscanalwaysbeguaranteed,evenwhenusingscenes
with 1000cameras.Using coarseresolutionto plan a cam-
erapath,the�nal renderingof avirtual �y by couldbedone
fully automatedwith highest accuracy in non-interactive
framerates.

Figure 12: Rendered new view of dinosaur sceletonand
museumhall. Main bonesand hall backgroundare recon-
structedcorrectly. The peaksof the spinal bonesare dis-
torteddueto improperdepthcompensation.

6. Experiments

The systemwastestedwith a large variety of real footage.
We testedscenesof differentcomplexity andvery different
spatialsamplerate.Somesceneswere taken with a hand-
heldstill cameraandvery few imageswereused.For other
sceneswe usedtwo or four camerasof the rig to obtain
many images.As anexampleof acomplex outdoorscenewe
recordedawalk overaparkinglot with trees,cars,andbuild-
ings.214images(2x107stereopairs)with 1024x768pixels
eachwererecorded.Thecoveredtrackwasabout35 m, re-
sulting in a spatialsamplingbetweenthe imagesof about
30 cm. Scenedepthextendedbetween3 and75 m, causing
imagedisparitiesof about100 pixel betweenadjacentim-
ages.Figure11 shows two imagesof theoriginal sceneand
a depthmapof the right original imageto documentthat a
densereconstructionof trees,carsandbushescouldbeob-
tained.The renderednovel view (bottomright) shows that
even small detailslike the lamp postandthe treesareren-
deredfrom new a perspective with high realismand little
distortion.

Finally we show renderingresultsof the dinosaurscene
as describedin section3.3. An original image(�g. 3,left)
was removed and interpolatedfrom the remainingimages
(�g. 12, left). Most imageregions are renderedwith high
quality. The peaksof the spinalbonesaredistortedsincea
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properdepthreconstructionwasnot feasibledue to occlu-
sions.Theseregions were marked black in the depthmap
(�g. 3,right).

7. Conclusions

We have discusseda new image-basedrendering ap-
proachthatcanhandleuncalibratedmulti-camerasequences
from a hand-operatedcamerarig. In a preprocessingstep
the cameracalibration and depth reconstructionis per-
formedautomaticallyfrom theimagesequenceitself. These
view-dependentdata are then usedfor interactive image-
basedrenderingby depth-compensatedwarping of view-
dependenttextures.The systemcanhandlevery large data
setsof hundredsof imagesat interactive rates.Experiments
haveshown thatthesurface-basedrenderingapproachissuc-
cessfulif densedepthcanbecomputed.However, in regions
with many small andoccludingobjects,depthcomputation
mayfail anddistortionsoccur. Also, if thedisparitybetween
adjacentimagesis veryhigh,edgeinterpolationartefactsoc-
cur. We arecurrently investigatinghow to overcomethese
drawbacks.Possiblesolutionsmay be to selectively switch
from surfacetopoint-basedrenderingor tousemulti-layered
depthimagesto accountfor theoccludingregions.We will
investigatefurtherin thisdirection.

Acknowledgements

Thework is beingfundedby theEuropeanprojectIST-2000-
28436ORIGAMI. The imagesfor the dinosaurscenewere
suppliedby Oliver Grau,BBC Research.

References

1. Chris Buehler, Michael Bosse, Leonard McMillan,
StevenJ.Gortler, andMichaelF. Cohen.Unstructured
lumigraphrendering. In EugeneFiume,editor, SIG-
GRAPH2001,ComputerGraphicsProceedings, pages
425–432.ACM Press/ ACM SIGGRAPH,2001. 2

2. PaulDebevec,YizhouYu, andGeorgeBoshokov. Ef�-
cientview-dependentimage-basedrenderingwith pro-
jective texture-mapping. TechnicalReport CSD-98-
1003,20,1998. 2

3. Jan-MichaelFrahm,Jan-FrisoEvers-Senne,andRein-
hardKoch. Network protocolfor interactionandscal-
abledistributedvisualization. In 3DPVT2002, 2002.
3

4. StevenJ.Gortler, RadekGrzeszczuk,RichardSzeliski,
and Michael F. Cohen. The lumigraph. Computer
Graphics, 30(AnnualConferenceSeries):43–54,1996.
2

5. Benno Heigel, ReinhardKoch, and Mark Pollefeys.
Plenoptic modeling and rendering from image se-
quencestakenby a hand-heldcamera.In Proceedings
of DAGM 1999, 1999. 2

6. R. Koch, J.F. Frahm, J.M.and Evers-Senne,and
J. Woetzel. Plenoptic modeling of 3d sceneswith
a sensor-augmentedmulti-camera rig. In Tyrrhe-
nian International Workshopon Digital Communica-
tion (IWDC): proceedings, Sept.2002. 3

7. R. Koch, Pollefeys M., and L. Van Gool. Multi
viewpoint stereofrom uncalibratedvideo sequences.
In Proc. ECCV'98, number1406 in LNCS. Springer,
1998. 4

8. R. Koch, M. Pollefeys, B. Heigl, L. Van Gool, and
H. Niemann. Calibration of handheldcamerase-
quencesfor plenopticmodeling. In ProceedingsICCV
99, Korfu, Greece,1999. 2, 3

9. Marc Levoy and Pat Hanrahan. Light �eld ren-
dering. ComputerGraphics, 30(Annual Conference
Series):31–42,1996. 2

10. M. MagnorandB. Girod. Datacompressionfor light
�eld rendering. IEEE Trans. Circuits and Systems,
2000. 2

11. Wojciech Matusik, HanspeterP�ster, Addy Ngan,
PaulBeardsley, RemoZiegler, andLeonardMcMillan.
Image-based3d photographyusingopacityhulls. 2

12. LeonardMcMillan andGary Bishop. Plenopticmod-
eling: An image-basedrenderingsystem. Computer
Graphics, 29(AnnualConferenceSeries):39–46,1995.
2

13. Marc Pollefeys, ReinhardKoch,andLuc J. VanGool.
Self-calibrationand metric reconstructionin spite of
varying andunknown internalcameraparameters.In-
ternational Journal of ComputerVision, 32(1):7–25,
1999. 2, 3

14. K. Pulli, T. Duchamp, H. Hoppe, J. McDonald,
L. Shapiro,andW. Stuetzle.Robustmeshesfrom mul-
tiple rangemaps,1997. 2

15. Kari Pulli, Michael Cohen,Tom Duchamp,Hugues
Hoppe,Linda Shapiro,and Werner Stuetzle. View-
basedrendering:Visualizingrealobjectsfrom scanned
rangeand color data. In Julie Dorsey and Phillipp
Slusallek,editors,RenderingTechniques'97 (Proceed-
ings of the Eighth Eurographics Workshop on Ren-
dering), pages23–34,New York, NY, 1997.Springer
Wien. 2

16. X. TongandR.M. Gray. Compressionof light �elds us-
ing disparitycompensationandvectorquantisation.In
Proc. IASTEDConf. ComputerGraphicsandImaging,
pages300–305,October1999. 2

17. MatthiasZwicker, HanspeterP�ster, Jeroenvan Baar,
andMarkusGross.Surfacesplatting.In EugeneFiume,
editor, SIGGRAPH2001,ComputerGraphicsProceed-
ings, pages371–378.ACM Press/ ACM SIGGRAPH,
2001. 2

c
�

TheEurographicsAssociationandBlackwell Publishers2003.


