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Abstract

In this paperwe presenta novel apptoad for interactiverenderingof virtual views from real image sequences.
Combiningthe conceptof light elds, depth-compensatédthage warping and view dependentexture mapping
this plenopticmodelingappmoadc canhandlelarge andcomple scenesA portable handheldnulti-camea system
has beendevelopedthat allows to recod multiple image streamsby simply walking around the scene These
image streamsare automaticallycalibratedand depthmapsfor all views are geneatedasinput to the rendering
stege. For renderinga view dependentvarping surfaceis constructecbn the y and depth-compensatdthage
interpolationis appliedwith view-dependentexture mapping Renderingyuality is scalableto allow fastpreview
andto achieve high-endquality with the sameapproac. Thesystentanhandlelarge andgeometricallycomple
scenewith hundedsof realimagesat interactiverates.

CatagyoriesandSubjectDescriptorgaccordingo ACM CCS} 1.3.3[ComputerGraphics]:Viewing algorithms.4.1
[ImageProcessingndComputeiVision]: DigitizationandimageCapture).4.8[ImageProcessingndComputer
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Vision]: SceneAnalysis

1. Intr oduction

One of the major goalsin computergraphicsis to display
virtual worlds similar to real ones. For complex scenes,
however, it is often not feasibleto createthem by hand
with 3D constructiontools. Even worse,thosemodelsare
most often recognizedas synthetic after just a few sec-
ondsdue to the lack of realistic surface appearanceOne
well known approacho visualizecomple sceness Image-
Based-Renderingr IBR. The ideabehindit is to capture
theappearancef arealscenewith imagesandusethis ma-
terialto generatanddisplaynew virtual views of thescene.
Modern CCD camerasllow fastandefcient capturingof
thevisualcomponentsf ascengcolor, light), while thege-
ometricalcomponentaremoredif cult to obtain.Thesame
is true for image-basedendering.In most casesit is ob-
vious how to displaythe images,but geometricainforma-
tion is neededor a correctsynthesiof novel views. View-
dependenibcalgeometryinformationin form of depthmaps
canbe computedrom imagesequenceby eitherrangedata
scannerr stereoscopiémage analysisalgorithms.How-
ever, dueto incorrectcameracalibration, dif cult lighting
conditionsand non-staticscenest is often not possibleto
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generateone globally consistent3D model from hundreds
of imagesanddepthmapsautomatically

In this work we will presenta renderingsystemwhich
generatessiew-dependentocal geometryon the y from
multiple depth maps.For eachnew view the depthmaps
of the surroundingreal views are fusedin a scalablefash-
ion to obtaina locally consisten8D model. This geometri-
cal representatiois basedon trianglesandcanthenbe tex-
turedwith theimagescorrespondingo thedepthmapsusing
hardware-acceleratechniques.

The rst stepin image-basedenderingis the acquisition
of imagesof therealscendrom mary differentview points.
Herewe wantto beableto scanthescenedy simplywalking
aroundtheareaof interestandto automaticallycalibratethe
cameradrom the imagedataalone.To meettheserequire-
mentswe have developeda e xible and mobile capturing
systemfor ef cient multiview recordingin indoor andout-
door ernvironments,using standardaptopsand four battery
powveredsynchronisedcamerasnountedon arig. The syn-
chronisationin conjunctionwith the rigid coupling of the
camerasupportghecalibrationevenfor non-rigidandgeo-
metricallyvery complex scenesvith occlusionsin anof ine
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modelingstepa setof densedepthmapsis then computed
from multi-viewpoint sterecanalysis Thesedepthmapsare
thenusedasinput to the proposednline renderingsystem
for novel view synthesis.

In the next sectionan overview of relatedwork will be
given to help classifyingthis paper In section3 the multi-
camerasystemand the necessanpreprocessin@f the im-
ageswill bepresentedThen,in section4 the onlinerender
ing systembasedon imagesand depthmapsis introduced.
And nally in section5 someresultsand conclusionsare
given.

2. Previous Work and Moti vation

Image-basedenderingis closely connectedo the plenop-
tic functionintroducedby McMillan andBishopin 2. This
function de nes all radianceemitted from one point into
every direction; for a dynamicscenethe dimensionof the
plenopticfunctionis 7. Levoy andHanraharproposedn °
an IBR systemcalled Light Field which interpolatednew
views using a 4D representatiorof the plenopticfunction
(for a staticsurface).To approximatethe plenopticfunction
a very densemeshof imagesfrom cameradying in aregu-
lar sampledviewpoint planeis used Lessdensesamplingof
theviewing spaceresultsin visualartifactswheninterpolat-
ing betweenviews. The Lumigraphintroducedy Gortleret
alin 4 usesaconvex 3D shapeapproximatiorfor depthcom-
pensatednterpolation.They alsosuggestedn approachto
allow theusageof a hand-heldcameraandused‘rebinning”
to mapthe original images However, this intermediatestep
of interpolationreduceghe quality of theimages.

View-dependentexture mapping(VDTM) is an alterna-
tiveway of renderingvisualeffectsfrom differentviews. In 2
Debevecetal. describeareal-timeVDTM algorithmwhich
useshardvare-accelerategrojective texture mapping.For
VDTM a consistenB8D modelis required,which is not al-
ways easyto obtain.In 1999 Heigl et al. presentedn > a
plenopticmodeling approachbasedon the imagesfrom a
hand-heldcamera.They useddepthmapsasa local repre-
sentationof the scenegeometryand correctedthe interpo-
lation of eachray by usingthis information.Looking up the
colorfor eachrayin thethreesurroundingcamerass similar
to VDTM with threblendedextures.Buehleretal. in 1 pro-
posedheir unstructuedlumigraphrenderingwhichis ahy-
brid designbetweerVDTM andlight eld renderingUnlike
VDTM, they donotrely onahigh-qualitygeometricnodel,
butthey needageometricabpproximatiorof thesceneAlso
Pulli etal.in 15 describedriew-basedenderingasa“method
betweerpurelymodel-basedndpurelyimage-basedheth-
ods”. Eachrealview consistof acoloredrangeimage,then
several partialmodelsarebuilt andblendediogether

All mentionedenderingechnigueshareoneissue:They
needapproximategeometryinformation.To create3D mod-
els from rangeimagesPulli proposeda volume basedap-
proachin 14, but for morecomplex sceneshis couldbevery

hardor evenimpossible Pointbasedenderingsystemdik e
describedn 17 are also useful to renderfrom depthmaps
andimages.But dueto holesin the depthmapsit is often
necessaryo Il holesin the local geometry This problem
is bettersolved by usinginterpolatingsurfacesasrendering
primitivesinsteadof points.

The otheropenissuecommonto mostIBR systemss the
acquisitionof imagesln the beginning, staticgridswith lots
of fully calibratedcamerasvereused Alternatively, motion
controlsystemscantheviewing spacewith onesinglecam-
era. This resultsin very densesamplingwhich is a good
startfor rendering,but which alsoresultsin large amounts
of data.Levoy and Hanrahanrst suggesteg methodfor
light eld compressionsincethenthis problemhasbeenthe
focusof mary publications® 16, Gortleretal. 4 startedusing
weaklycalibratechand-helccameragndusedknown mark-
ersfor poseestimation At lastyearsSIGGRAPHMatusiket
al. presentedh systemfor “Image-Based3D Photography”
in 11, They useseveral calibratedcamerasa turntableand
rotatinglight sourcesaswell asknown backgroundmages
displayedon a large plasmascreenWith this systemthey
areableto capturethe appearancef very detailedobjects
includingspeculare ections andfuzzy material.

All thesemethodslonotscalewell with thesizeandcom-
plexity of the sceneandthey areoftenspecializedo sample
single objectsin controlledenvironments.Koch and Polle-
feysasin 2 and13 usedimagesequencefom uncalibrated
hand-heldcamerasand Structue From Motion (SFM) algo-
rithms. This approachscaleswell despitethe factthatscan-
ning alargeviewing volumewith onesinglecameras time-
consumingeven when using video framerate.In addition,
specularre ections, changinglighting condition (clouds),
unsteadymovementof the cameraanddynamicscenesnay
causehe SFM algorithmsto fail.

Therenderingmethodproposedn this paperis similar to
the meshcreationfrom Heigl et al. 5, but the construction
of the underlyingmodelis different. The resultingmeshis
texturedin realtimeusingVDTM similar to Debevec's ap-
proach,but becausehe geometryinformation of eachsur
faceareamayresultfrom up to threecamerasthetextureis
alsochoserfrom thesecameras.

3. Image Acquisition and Of ine  Geometric Modeling

In this sectionwe describeheimageacquisitionandprepro-
cessingnodules Thesemodulesoperateof ine andmustbe
performedoncefor eachacquiredsceneonly. The stepsare:

Imagecapture,

Camereacalibration,

multi-view depthestimation,

preparatiorof depthsampledor realtimegeometrionod-
eling.
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3.1. Multi-Camera imagecapture

For fastandef cient sceneacquisitionwe introducea hand-
held multi-camerasystemwhich is scalablefor different
scenesln outdoorervironmentmobility is given by using
standardaptopcomputersTheir limited performanceesult
in areducedramerate.On the otherhandin a studioenvi-
ronmentthe capturingsystembene tsfrom the high perfor
manceof modernPC systemawith higherframerates.

Figure 1: Multi-camemr rig with syndronizedimage cap-
ture

A prototype systemconsistingof four digital re wire
(IEEE 1394) camerasandtwo laptopsin a rack, which can
be carriedby the operator hasbeenbuilt. The camerasare
mountedon a pole with adjustablepositionand orientation
of eachcamera,so ary desiredcon guration of the cam-
eraposeson the pole canbe used.The sensorcaneasilybe
moved by handwithoutatripod, in particularallowing hor-
izontal, vertical androtationalmotion to scanthe sceneby
simply walking by. The camerasare time-synchronizedo
that non-staticscenesan be sampledby obtaining"times-
liced", synchronizedshotsof multiple camerasn which all
movementsin the scenearefrozenfor thetimeslice.These
frozenmultiple views of the scenehelp obtaining3D infor-
mationandperformplenopticrenderingof non-cooperatie
scenedecausdimited motionin thescenecanbetolerated.
Differentscenesnay requirea differentviewing space By
adjustingthecamera®nthepoleor by usingapoleof differ-

entlengththeviewing spacecanbeadaptedo t thescene.

Even morecamerasanbe addedto enhancehe quality of
the samplemesh.Hence,a 2D scanningof the viewpoint
surfaceis obtainedwith a singlewalk-by:.

To handledatafrom four cameraswith a mobile system,
we decidedto usetwo laptopseachconnectedo two cam-
erasThelaptopsaresynchronizedia standarathernetvith

a scalablenetwork protocol 2 which senestwo purposes:

The distribution of parameterge.g. exposuretime) to all
camerasandcapturesynchronizatiotin time. Usingdouble-
buffering andthreethreadernode theresultingframerate
for colorimagesof thesize1024x768with four cameragnd
two computerds four fps. This is sufcient for denseview
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spacesamplingby aslowly walking operatorin acontrolled
studioernvironment,the synchronizatiorprotocolallows an
arbitraryamountof computergo be connecte@éndthecam-
erascanoperateat full framerate.

3.2. Cameratracking and calibration

Theimagesareacquiredwith ahand-heldnulti-camerasys-
temwith arbitrary cameramotion. Sincewe want to avoid

putting markers into the scene,we have no control over

the scenecontent. Therefore,all cameraviews are uncal-
ibrated and the calibration and the cameratrack must be
estimatedrom the imagesequencétself. Furthermorethe
sceneis mostlikely uncooperatie, meaningthat comple

geometry massie occlusionand moving objectsmay hin-

derthe calibration.The only controlwe have is the speci ¢

con guration of our camerasetupand, to a limited extend,
someknowledgeaboutthe performedcameramotion. Since
all camerasoperatesynchronouslywe know that ,for one
instant,all camerasview a “time-frozen” static scene. We

alsoknow thatfrom onerecordingtimestepto the next, the
relative con guration betweenthe cameradlid not change,
hencewe canpredictpossibleobjectpositionsin theimages
of the next timestep.Thusthe relative orientation(the fun-

damentafjeometrybetweerthe images)is usedto stabilize
tracking.

For trackingand calibrationwe have extendedthe SFM-
approachof Pollefeys andKoch 13 8 to a multi-cameracon-
guration. Somedetailscanalsobe foundin 8. In this ap-
proachtheintrinsicandextrinsiccamergarameterfor each
image are estimated.The standarddecriptionof a projec-
tive cameraconsistsof two 3x3 matricesK andR andthe
3-dimensionabectorC. K containsthe intrinsic camergpa-
rameterdfocal length, aspectratio andimagecenter R de-
scribegherotationof thecameran spaceandC is thetrans-
lation vectorof the cameracenter The projectionmatrix M
projectsthe homogeneou8D point P into a 2D imageat
imagepoint p with zp  MP, zis the projective depth.M is
de ned asthefollowing projective 3x4-matrix:

M KR R'C

The SFM approachautomaticallytrackssalient3D features
(intensity corners)throughoutthe images.The calibration
resultsin a projection matrix for eachcameraof the se-
guenceand a sparsepoint cloud of the tracked 3D feature
points.Theapproacthasbeentestedextensiely with awide
variety of cameracon gurationsandscenesandhasproven
to be very successfulThe cameratracking and calibration
may suffer from a projective skew andfrom erroraccumu-
lation in the caseof very long imagesequencesRecording
large scenesneansthat mostimagesdo not sharea com-
monregion of thesceneThis afffectsthe quality of tracking
andmatchingof features Thereforewe cannotguarantea
globally consistenscenemodel. Theseproblemsaregreatly
reducedwith the multi-camerarig sincewe canexploit the
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rigidity constraintsof the cameracon guration. The prob-
lem is even lessimportantin the caseof image-baseden-
dering.lt is sufcient to renderfrom local geometrythatis
supportedrom a local neighborhoodonly, becausauring
renderingonly partsof the scenearevisible at once.Depth
mapsare appropriateocal scenedescriptionsthat may be
usedfor this purpose.

3.3. Multi-viewpoint depth estimation

With the calibratedimage sequenceat hand, one can ob-

tain densedepthmapsfrom multi-viewpoint disparity esti-
mation.Fromthe calibrationthe epipolargeometrybetween
pairsof imagess knowvn andcanbe usedto restrictthe cor

respondenceearcto alinearsearchWe extendthemethod
of Kochetal. 7 for multi-viewpoint depthestimationto the
multi-cameracon guration. This methodis ideally suited
sincewe canexploit the 2D grid of linked depthmapsfor all

camera®f therig. This resultsin very densedepthmapsof

thelocal scenegeometryOnly in very homogeneousnage
regionsit might not be possibleto extract sufcient scene
depth.Theseregionswill be interpolatedfrom neighboring
depthvalues Usingmorethanonepair of camerasllows us
to Il holesfrom occlusionsaandto enhancehe precisionof

thedepthmaps.

To give anideaaboutthe quality of the estimatectalibra-
tion andthedepthmaps acomple realscenevasevaluated.
240imagesveretakenwith afour-cameraig attheNational
History Museum,London,featuringa large dinosaurskele-
tonin the main entrancehall. Therig wasmaoved alongside
thedinosaulooking attheskeletonandthebackhall region.
Onemayjudgethehighquality of thecameracalibrationand
the densityof the depthmapeven with this highly comple
sceneln gure 2, left, we seeanoverview pictureof themu-
seumhall with the skeleton.To theright, thetracked camera
positions(pyramids)andthe 3D featurecloud with tracked
pointsof the dinosaurandthe hall backareaaredisplayed.
Thedinosaurshapeshavs thatevenaglobally consistente-
constructiorof thescenewvaspossible.

Figure3 shawvs oneof the original cameramagesandthe
correspondinglepthmap. The densityandresolutionof the
depthmapis very detailed.The cameras rathernearto the
skeletonand the depthof the sceneis very large, causing
displacementsf up to 80 pixels betweenadjacentmages.
Therefore jmageinterpolationalonewill notsufce to ren-
dernovel views of the sceneanddepthcompensatiois nec-
essaryThescenecontainsalot of occludedregions(around
the ribs) and one canseethatin someof thoseregionsno
depthcouldbe estimatedTheseregionsarecoloredblack.

3.4. Sampling the Depth maps

The depth maps sene as geometryinput for the view-
dependentnlinemodelingthatwill bedescribedn the next
section.Using the depthmapsdirectly with full resolution
is not feasibledue to the vastamountof data.We do not

Figure 2: 4-camea acquisitionand calibration of the di-
nosaurscene Left: Overviav of the sceneto be captued.
Right: SFM-calibiation with camer positions (pyramids)
and 3D featue points of dinosaur and hall badkground
(snapshofrom3D scenemodel).

Figure 3: Left: One of the acquired original camen im-
ages. Right: correspondingdepth map of camea view
(near=dark,far=light, unde ned=blac).

needsuchhigh resolutiongeometryfor view interpolation.
Therefore eachdepthmapis subsampledn a regular grid

with a spacingthatis parametrizedsuchthat it caneasily
be adaptedo the speci ¢ needs.This grid is locatedin the
imageplaneof therealcameraAt eachgrid pointa 2D me-
dian Iter is appliedto reducethe effectsof outliersandto
nd the mostprobabledepth.The Itered depthvalue cor-

respondgo the distancebetweerthe pointin the sceneand
the cameracenter In otherwords,it is the length of a ray
originatingfrom the cameracenterthroughthe grid pointin

theimageto the pointin the scenewhich causedheimage
point. Takingthe j-th 2D point pi' in theimageplaneof cam-
erai andthecorrespondin@listancaiJ from thedepthmap,
the euclidearBD scenepointP! canbecalculatedas:

P Z krRT ' p g
The 3D point F’iJ of the 2D point p; from camera is called
samplej of camerd. For eachgrid pointin eachcameraone
samples createdIn untexturedregionsof theimageit is of-
tenimpossibleto determinethe depth.This resultsin holes
in the depth map, samplesin theseregions are discarded.
Lateronin therenderingstagethe geometryin theseregions
is constructedrom the samplesrom othercamerasf pos-
sible. Thevalid samplessene asgeometricapproximations
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thatareusedto de ne theview-dependeninterpolationsur
face.

For a bettertrade-of betweenperformanceand quality,
a Level-of-Detail (LOD) is introducedat this point. When
creatingthe samplesthe desirednumberof levels Lmax can
be chosenAfter their generatiorall sampledelongto level
zerolg by default. To generatdevel L, 1 eachsecondsam-
ple in both directionfrom level Ly is movedto level Ly ;.
Thusthe numberof samplesn level Ly ; is1 4 of thepre-
vious numberof samplesn level Ly which is now reduced
by 1 4. Filtering the sampleseforesubsamplings not re-
quired,duetothemedianIter whichwasappliedwhengen-
eratingthesamples.

While renderingwith a speci ¢ LOD n, the samplesof
several levels are usedin combination.Renderingwith the
coarseslevel only thesampleof Lmax areused For thenext
level Limax 1 the samplesof Lmax andof Linax 1 areused.
In general,if level Lp is requestedall levelsLyx with x n
areused.

4. Image-basednteractiverendering

The calibratedviews and the preprocessedepthmapsare
usedasinput to the image-basednteractve renderingen-
gine. The usercontrols a virtual camerawhich views the
scendrom novel viewpoints. The novel view is interpolated
from the setof real calibratedcameraimagesandtheir as-
sociateddepthmaps.During renderingit mustbe decided
which cameramagesarebestsuitedto interpolatethenovel

view, how to compensatéor depthchangesndhow to blend
thetexturefrom thedifferentimagesFor largeandcomple

scenesiundredr eventhousandsf imageshaveto bepro-

cessedAll theseoperationsnustbeperformedatinteractve

frameratesof 10fps or more.We addressheseissuesn the
following sections:

Selectionof bestrealcameraviews,

fusionof multiview geometryfrom theviews,
viewpoint-adaptie meshgeneration,
viewpoint-adaptre texture blending.

4.1. Cameraranking and selection

For eachnovel view to rendeyit hasto bedecidedwvhichreal
camerado use.Several criteriasare relevant for this deci-
sion.We have developeda rankingcriterionfor orderingthe
realcamerasln thefollowing, N realcamera€;,0 i N
arecomparedo thevirtual camereCy.

Distance: The rst criterion concernscameraproximity.
Takingtheviewing directionAy andthe centerC, of thevir-
tual camerathe orthogonaldistanced; of eachreal camera
centerC; to this ray canbe determined:

G & A

di A
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For betterevaluationall distancesl; arenormalizedwith the
maximumdistancedmax of all camerasdmax is the maxi-
mumof all d; for thecurrentCy:

dmax maxdi0 i N

Viewing angle: The secondcriterionis the anglebetween
Ay andthe viewing directionA; of camera. Cameradook-
ing into directionsdifferentto the virtual cameraare pe-
nalisedbecausehey arelessusefulfor view interpolation.
Theangulampenaltya; for camerd is de ned as:

arccosA; Ay
Amax

For normalization a maximum threshold angle amax
=ag|g-of-view IS given. Cameraswvhich are more than their
eld-of-view “off axis” do not sharea common viewing
rangeand can not be usedfor propergeometryor texture
interpolation thesearemarkedinvalid.

O Samples C;
+ Samples C;

Figure 4: Criteria evaluation. The ranking criteria are
shownfor two real cameas C; andCy. Cy sees3 samples
fromC; and4 sampledsromC,.

Visibility: Thethird criterionis amorecomple one,we call
it the visibility. It evaluatesthe scenevolumethat a given
real camerahasas seenin the context of the virtual cam-
era.For this purposevery few (nmax  20) regular samples
of the depthmapsas describedabove are chosensuchthat
the whole imageof the real camerais covered.Thesesam-
plesarethenprojectedinto the virtual cameraandchecled
for visibility. The numberof visible samples; divided by
the numberof possiblesamplesimax givesaroughapproxi-
mationof the region coveredby arealcameraCamerador
which this ratio resultsto zeroare marked invalid. To con-
vertthisvalueinto avisibility penaltyy; it is subtractedrom
one:

N

vi 1

Nmax

Figure4 sketcheghe differentselectioncriteria. Two real
camera€; andC, areevaluatedw.r.t. thevirtual camereCy.
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Distanceandviewing anglearegivenin the gure. For visi-
bility, thedepthsamplegrom cameral (circles)andcamera
2 (crossespre projectedinto the virtual cameraand evalu-
ated.

All three criteria are weightedand combinedinto one
scalarvalue g; which representshe inversequality of the
realcamera to generatehe new view:

g Wgdi Wad Wi

After calculatingg; for eachcamerathelist of valid cam-
erasis sortedin ascendingrder Theinterpolationmode -
nally decideshow mary of the bestsuitedcamerasre se-
lectedfor view interpolation.

4.2. Multi view depth fusion and meshcreation

Therankedcameragsrenow usedto interpolatenovel views.
Sincethenovel view maycovera eld of view thatis larger
thanary realcameraview, we haveto fuseviews from differ-
entcamerasnto onelocally consistentmage.To ef ciently
warp imagesfrom differentreal views into the novel view-
point we generatea warping surfaceapproximatinghe ge-
ometryof the scene Startingfrom a regular 2D-grid thatis
placedin theimageplaneof thevirtual camerahis warping
surfacewill beupdatedor eachcameramotion. Thespacing
of thisgrid S sx sy with sx sy in pixels canbe scaledto
thecompleity of thesceneWith eachpointin thegrid, a5-
tupleg
pg is the 2D positionin the imageplane,Py the 3D point
to be constructedig is the numberof the cameraresponsi-
ble for Py, bg is a booleanmarkingthis grid point valid or
invalid anddg is the distancefrom Py to Cy. The by anddy
componentsf all grid pointsaresetto defaultvalueswhich
arebg invalid anddg

To fuse 3D informationfrom the rst n ranked cameras,
for eachcamera thefollowing algorithmis used.

Eachvalid sampleF’ij for camerai is projectedinto the
virtual camerawith pij M\,Pij andthe distan(:edij
F’ij Cv iscalculated.

If pij is not in the visible area,the following stepsare
skippedandthe next sampleF’ij !is taken. If it is in the
visible area,the nearesgrid point gn is selectedDueto
theregularity of the grid, thisis easilydonewith

gn rnd %

If the currentsamplep! hasa smaller distanced; to
Cy thenthe selectedgrid points depthdg,, thenthe grid
pointsdatais updatedrom this sample glsethe updateis
skipped.Whenupdatinga grid point from a sample,Pg,
is setto P!, pg, is adjustedo p/, thecamerasumber is
storedin ig, andthe new distancevaluedi' is assignedo
dg,-

Py pg ig by dg calledgrid pointis associated.

The algorithmproceedsith the next sampIePiJ o Updat-
ing grid points only with sampleswhich are nearerto the
virtual camera(di' dg,) ensuresthat occlusionare han-
dled correctly The samplesof the highestranked cameras
are projected rst. This ensureghat most part of the new
view is interpolatedfrom the bestcamerasOnly in regions
thatareoccludedor thebestcameraalowerranked camera
samples used.Figure5 depictsthis situation.

- N N
\ \ | 7 /
v Cy
Cz
Regions seen from: Cy

— Cameral
Camera 2

Figure 5: Geometryfusion from two cameas, with Cy
ranked higher than C,. Basedon the ranking C; will sup-
ply mostof theinformation.Only in partsthat are occluded
for Cq1, datafromC; is lled in.

After projectingsamplesand adjustinggrid points,most
grid pointsarevalid andcontain3D informationsuitableto
representhe partof the scenevisible in the virtual camera.
But becausesomegrid points could be still invalid andthe
2D positionsin pg, are tted to projectedsamplesthe con-
nectiity of the grid points cannotbe given from the grid
itself. Usingthe 2D positionof theall valid grid points,a2D
Delaury triangulationof all grid pointsin theimageplaneof
thevirtual camerais performed.Transferringthis 2D mesh
to the3D pointsPy, givesusascalableapproximatiorof the
3D scenewith triangles.The approximationcan be scaled
with respectto the samplingdensityof depthsamplesand
the densityof the grid pointsfor triangulation.This surface
meshis recreatedftereachcameranovementasviewpoint-
adaptve geometry

4.3. Texturing

The texturing step effectively mapsthe real camerasinto
thevirtual view with the help of the viewpoint-adaptie sur
facemesh.Several slightly differentmethodsfor texturing
are consideredThe most simple one is to chosethe best

¢ TheEurographic#ssociatiorandBlackwell Publisher2003.



Evers-SennendKoch / Image Basednteractive Renderingvith View DependenGeometry

ranked cameraastexture source.If this real camerais not
toofar away from thevirtual cameraandbothhave a similar
eld of view, the resultsare good. This is the fastesttex-

turing methodsinceswitchingbetweendifferenttexturesin

onerendercycle is not necessarynd eachtriangle hasto

be dravn only once.Problemsarisewhenpartsof themesh
are not seenfrom the selectedcamera.Thesepartsremain
untextured.

Totextureall trianglesproperlyit is necessario selectthe
texture accordingto the camerasvherethe geometryorig-
inatedfrom. The triangle verticesare depth samplepoints
wherethe originatingreal cameras known. However, since
eachvertex is generatedndependentlya trianglemay have
verticesfrom up to threecamerasHere onemay decideto
eitherselectthebest-rankdcamergsingle-tecturemode)or
to blendall associatedameraexturesonthetriangle(multi-
texture mode).Properblendingof all textureswill resultin
smoothetransitionbetweerviews but with higherrendering
costsfor multi-passrendering.

To testtherenderingguality, a syntheticscenevasgener
atedby composinga VRML modelof the“Arenbeg Castle”
togethemwith aVRML modelof anentranceportalto simu-
lateocclusionasshavn in gure 6 (right). Thistextured3D
modelwasthenrenderedrom differentviews and screen-
shotsalongwith synthesizedlepthmapsandcorresponding
projectionmatriceswere saved. Basedon this groundtruth
material,therenderingquality wasveri ed. To measurghe
imagequality, oneview (shavn in gure 6, right) from the
sequencavastaken asreferencémage.The corresponding
camerawas then removed and this view was interpolated
from theremainingmageswith differenttexturingmethods.
The mostcritical regions are the edgesbetweenthe back-
groundwall andthe foregroundportal. Due to the variation
in depth,mostartifactsarelocatedhere.For bettercompari-
sonthis regionis magni ed ( gure 6, left) andthereference
imageis thencomparedo thedifferentinterpolatedsiews by
imagesubstractionTheresultingdifferencamagesenesas
visual errormeasureandadditionallythe meanabsoluten-
tensitydifference(MAD) is given.To emphaziséhe visual
errorsa gammacorrectionof 0.3 wasappliedon the differ-
enceimages.

For comparisornonly, the most simple approximationof
thedesiredview is used.For this purposethe nearestmage
is taken without depthwarping(nearesneighbour),in fact,
this is equivalentto standardmageinterpolation.Figure 7
shaws thattherearelarge areasaroundthe portalwherethis
interpolationfails dueto the largeimagedisplacements.

The differenceimageshaws thatthe objectsarenot ren-
deredat the correctdepthandthe MAD valueis 26.5.With
our proposedenderingsystemwe canapply depthcompen-
sationwith differenttexturing modes.
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Figure 6: An input view of a syntheticscene(right) and a
magni ed closeupof critical regions(left).

Figure7: Renderindleft) anddifferenceimage (right) when
a neaestneighborselectionwithout interpolationis used.
Thedifferenceimage showsthat large image displacements
occurespeciallyin theforegroundregions.MAD = 26.5

Figure 8: Renderingwith single-camea, single-texture
mode:Thedepth-compensatédterpolationrema/estheim-
age displacementdyut edge artefactsremain.MAD = 12.8

Figure 9: Rendering with multi-camea, single-texture
mode: The view-dependentexturing remaes some edge
artefactsat the right occludingborder of the portal. MAD
=124

Figure 10: Renderingwith multi-camea, three-texture
mode:Texture blendingreducesometexture edge artefacts,
althoughthe improvementis minor in this scene MAD =
11.8
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Thedepthmapsweresubsampleavith 200x160samples,
the size of the grid wasalso200x160points. Figure 8 was
renderedisingonly the highest-rankd camerégor texturing
(singlecamerasingletexturemode).lt is visible thatthege-
ometricalapproximationremores mostof the more serious
errorsresultingin a MAD of 12.8. Due to the discretized
samplingand geometricalconstruction, ne structuredike
thewindows in thebackgroundarenot modeledsufciently
which resultsin the remainingerrors.This renderingmode
is very fastsinceall texturesaretaken from a singletexture
map.

Using more sophisticatedtexturing compensatesome
moreerrorssothatthe nal visualqualityis very closeto the
original view. Figure 9 is renderedrom multiple cameras,
but eachtriangleusesonetextureonly (multi-camerasingle
texture).Fromthreepossiblecamerasagainthe bestranked
can be taken to texture the triangle. Sometexture switch-
ing is requiredbut recentgraphicshardvare is fastenough
for this. In regionswheremosttrianglesare textured from
one camerahe resultis the sameasin the rst method.In
regions textured from mary different cameraghis canre-
sult in texture artefactsbecauseadjacentfragmentsdo not
always match. This methodgives a MAD of 12.4. Since
eachtrianglehasto bedrawvn only once the slovdowvn com-
paredto single cameratexturing is small. Sharpedgesbe-

Figure11: Parkinglot sceneTop: Twooriginal images.Bot-
tom left: Depthmap,right: Novel viewpointrendeed from
theparkinglot scendn multi-camea, multi-texture mode

tweentexturescanbe avoidedby multi-texturing andblend-
ing. Eachtriangleis dravn threetimesusingthetexturesas-
sociatedvith thethreecameragmulti-cameramulti-texture
mode). The previously mentionededgesbetweentextures
are blendedsmoothly asshavn in gure 10 resultingin a
MAD fo 11.8.0nmoderngraphicshardwareit is alsopossi-
bleto usesingle-passnulti-texturing. Differenttextureunits

are loadedwith the threetexturesand thenthe triangle is
dravn only once. This gives a speed-upof approximatly
30%comparedo themulti-pasgexturing. Theperformance
gainis not factor3 asonewould expect,becausdor each
trianglethe texture units have to be reloadedwhich is quite
expensve.

5. Performanceissues

We have implementedthe describedrenderingsystemin
C++ usingOpenGLandtestedit on a standardPC (Linux)
with 1.7GHz AMD Athlon, 1GB memoryanda GeforcedTi
4400with 64 MB memory Thefollowing sectiondiscusses
someof the performancéassuesthat arise.We will discuss
memoryandprocessingpeedequirements.

5.1. Memory Handling

Expecting several hundredsof cameraimagesto render
from, somecarehasbeentaken to handlesuchamountsof

texturesand depthmaps.After creatingthe depthsamples,
the depthmapsare releasedmmediately To avoid sample
creationfor eachstartof the program thesamplesrestored
andreloadedif necessaryEvenif moderngraphicsboards
have 128 MB of memory this is far too little for our pur

pose but the AGP interfaceallows the usageof mainmem-
ory for textureswithout signi cant performancéoss.When
starting the progranmreseresagivenamountof memoryfor

texturesandcanalsobetold to loadasmary imagesaspossi-
blein adwance Lateron,imagesareloadedon demandvhen
they areusedfor the rst time. If the upperboundof mem-
ory for texturesis reachedthe leastrecentlyusedtextureis

releasedTexture compressiorns usedto presere memory

too. The x ed compressiomatiois 1 6, allowing to handle
6 times more texturesthan without compressionThe only

problemis that the compressiortakes sometime. In case
thetextureis loadedon demandwhich meangherendering
stopsuntil thetextureis ready it takesarounds timeslonger
compressinghe texture thanloadingit uncompressediVe

have thereforeprecompressethe images,storedthem on

diskandareloadingthemasalreadycompressetextureson

demand.

Using thesetechniquesyve areableto handleimagese-
guencef nearlyarbitrarysize.In aninitialization run all
imagesare preparedas compressedexturesand all depth
mapsare sampledin an LOD hierarchy This resultsin a
space-andtime-optimizedstorageof the plenopticmodel.
The syntheticcastlescenefor exampleconsistsof 216 im-
agesf the size768x512andtherequiredspaceor theorig-
inal imagesand depthmapsis about566 MB. The com-
pressedepresentationsesl32MB for depthsamplestorage
and109MB for compressetkxturesonly. Testswith scenes
of 1057 images(3 GByte raw data)on a PC with 1GByte
memoryshavedthatall texturescouldbepreloadedTo han-
dle even larger sceneson-demand-loadings also possible
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anddoesnot reducethe frameratesigni cantly. The bottle-
neckof loadingtexturesis removed.

Typically, theperformancef arenderengineis measured
in the displayedframesper secondwhich aredependenbn
thescenecompleity andvisible area.Our renderingsystem
is differentin this respecsincethe framerateis roughlyin-
dependentf the scenecompleity but depend®nthe num-
ber andresolutionof the real views that are usedfor inter-
polation. Eachtime the viewpoint is changedthe warping
surfacemeshis reconstructedrom the depthsampleof the
bestrankedn camerasThis operatioris linearin thenumber
of cameragimessamplesandperformedby the CPU.

The necessarystepsare cameraranking, projection of
thesamplesaandDelaung triangulation,asdescribedabove.
Cameraankingis quitefast,theselectedankingcriteriacan
be computedwith little cost,even 1000camerasareranked
in 3.9ms. The Delaung triangulationis linearin time w.r.t.
the numberof points.A meshfor 100x75grid pointsis cre-
atedin 25 ms, for 200x150grid pointsit took around101
ms.

5.2. Rendering performance

Projectingsampledrom real camerasnto the virtual cam-
erais also quite expensve. A typical density of 200x150
samplegesultsin 30000projectionsper cameraandusing
10realcameragjives300,000matrix-vectormultiplications.
Thesearecalculatedn approximatly77 ms.Addingthetime
for renderingwith 4 ms,a total of 182 mspergeometryup-
datefor a grid with 200x150points and 10 cameraswith
200x150samplesachis reached.

Forthisreasonthelevel-of-detailandthescalabledensity
of grid pointsis usedto reducethe compleity. Eachlevel-
of-detail andalso eachsteppingin the grid densityreduces
the computatiortime by factorfour. Also a properselection
of the relevant camerashelpsto reducethe numberof pro-
jectionsneededAll threevaluescanbeadjustedoy theuser
to trade betweenquality and speed.So using only 3 cam-
eraswith 100x75samplesanda grid with 100x75pointsit
took only 31 msto generatea new view. The lossin qual-
ity dependson the complity of the scenebut to enhance
the quality signi cantly, a slovdown of factor8 hasto be
toleratedfor mostscenes.

In generalfor closeupviews of small partsof the scene
only a small numberof camerads required,but the depth
granularityshouldbe ne. On the otherhand,to obtainan
overview over alargescenemary realcamerasrerequired
simultaneouslyut the level-of-detailcanbe chosermoder
atelybecausef thereductionof scale Finally, texturemap-
pingandblendingis performedThetexturemappinds fully
hardware accelerate@nd mostly determinedby the display
resolutionandthetexturing engineof the graphicscard.

With this scalableapproachjnteractive frameratesof 5
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to 10fps canalwaysbe guaranteedevenwhenusingscenes
with 1000 camerasUsing coarseresolutionto plana cam-

erapath,the nal renderingof avirtual y by couldbedone
fully automatedwith highestaccurag in non-interactie

framerates.

Figure 12: Rendeed new view of dinosaur sceletonand
museurrhall. Main bonesand hall badkground are recon-
structedcorrectly The peaksof the spinal bonesare dis-
torteddueto improperdepthcompensation.

6. Experiments

The systemwastestedwith a large variety of real footage.
We testedscenesf differentcompleity andvery different
spatialsamplerate. Somescenesvere taken with a hand-
heldstill cameraandvery few imageswere used.For other
sceneswe usedtwo or four camerasof the rig to obtain
mary imagesAs anexampleof acomplex outdoorscenave

recordechwalk overaparkinglot with trees cars,andbuild-

ings.214images(2x107 stereopairs)with 1024x768pixels
eachwererecorded The coveredtrack wasabout35 m, re-

sulting in a spatialsamplingbetweenthe imagesof about
30 cm. Scenedepthextendedbetween3 and 75 m, causing
imagedisparitiesof about100 pixel betweenadjacentim-

agesFigure11 shavs two imagesof the original sceneand
adepthmapof theright original imageto documenthata
densereconstructiorof trees,carsandbushescould be ob-
tained.The renderedhovel view (bottomright) shavs that
even small detailslike the lamp postandthe treesareren-
deredfrom newn a perspectie with high realismand little

distortion.

Finally we shawv renderingresultsof the dinosaurscene
asdescribedn section3.3. An original image(g. 3,left)
was removed and interpolatedfrom the remainingimages
(9. 12, left). Most imageregions are renderedwith high
quality. The peaksof the spinalbonesare distortedsincea



Evers-SennandKoch / Image Basedinteractive Renderingvith View DependenGeometry

properdepthreconstructiorwas not feasibledue to occlu-
sions. Theseregions were marked black in the depthmap

(9. 3 right).

7. Conclusions

We have discusseda nev image-basedrendering ap-
proachthatcanhandleuncalibratednulti-camerasequences
from a hand-operated¢damerarig. In a preprocessingtep
the cameracalibration and depth reconstructionis per
formedautomaticallyfrom theimagesequencdéself. These
view-dependentdata are then usedfor interactve image-
basedrenderingby depth-compensatedarping of view-
dependentextures. The systemcanhandlevery large data
setsof hundredf imagesat interactive rates.Experiments
have shavn thatthesurface-basetenderingapproaclis suc-
cessfulif densedepthcanbecomputedHowever, in regions
with mary smalland occludingobjects,depthcomputation
mayfail anddistortionsoccur Also, if thedisparitybetween
adjacentmagess very high,edgeinterpolationartefactsoc-
cur. We are currently investigatinghow to overcomethese
drawvbacks.Possiblesolutionsmay be to selectvely switch
from surfaceto point-basedenderingor to usemulti-layered
depthimagesto accountfor the occludingregions. We will
investigatefurtherin this direction.
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